|
a |
|
b/NewDatasetConvnet.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"metadata": { |
|
|
7 |
"collapsed": true |
|
|
8 |
}, |
|
|
9 |
"outputs": [], |
|
|
10 |
"source": [ |
|
|
11 |
"from scipy import io\n", |
|
|
12 |
"from scipy.signal import butter, lfilter\n", |
|
|
13 |
"import h5py\n", |
|
|
14 |
"import random\n", |
|
|
15 |
"import numpy as np\n", |
|
|
16 |
"import os" |
|
|
17 |
] |
|
|
18 |
}, |
|
|
19 |
{ |
|
|
20 |
"cell_type": "code", |
|
|
21 |
"execution_count": 2, |
|
|
22 |
"metadata": { |
|
|
23 |
"collapsed": true |
|
|
24 |
}, |
|
|
25 |
"outputs": [], |
|
|
26 |
"source": [ |
|
|
27 |
"datafolder = \"new_dataset/\"" |
|
|
28 |
] |
|
|
29 |
}, |
|
|
30 |
{ |
|
|
31 |
"cell_type": "code", |
|
|
32 |
"execution_count": 3, |
|
|
33 |
"metadata": { |
|
|
34 |
"collapsed": true |
|
|
35 |
}, |
|
|
36 |
"outputs": [], |
|
|
37 |
"source": [ |
|
|
38 |
"# some filtering code copypasted from provided notebook \n", |
|
|
39 |
"\n", |
|
|
40 |
"def butter_bandpass(lowcut, highcut, sampling_rate, order=5):\n", |
|
|
41 |
" nyq_freq = sampling_rate*0.5\n", |
|
|
42 |
" low = lowcut/nyq_freq\n", |
|
|
43 |
" high = highcut/nyq_freq\n", |
|
|
44 |
" b, a = butter(order, [low, high], btype='band')\n", |
|
|
45 |
" return b, a\n", |
|
|
46 |
"\n", |
|
|
47 |
"def butter_high_low_pass(lowcut, highcut, sampling_rate, order=5):\n", |
|
|
48 |
" nyq_freq = sampling_rate*0.5\n", |
|
|
49 |
" lower_bound = lowcut/nyq_freq\n", |
|
|
50 |
" higher_bound = highcut/nyq_freq\n", |
|
|
51 |
" b_high, a_high = butter(order, lower_bound, btype='high')\n", |
|
|
52 |
" b_low, a_low = butter(order, higher_bound, btype='low')\n", |
|
|
53 |
" return b_high, a_high, b_low, a_low\n", |
|
|
54 |
"\n", |
|
|
55 |
"def butter_bandpass_filter(data, lowcut, highcut, sampling_rate, order=5, how_to_filt = 'separately'):\n", |
|
|
56 |
" if how_to_filt == 'separately':\n", |
|
|
57 |
" b_high, a_high, b_low, a_low = butter_high_low_pass(lowcut, highcut, sampling_rate, order=order)\n", |
|
|
58 |
" y = lfilter(b_high, a_high, data)\n", |
|
|
59 |
" y = lfilter(b_low, a_low, y)\n", |
|
|
60 |
" elif how_to_filt == 'simultaneously':\n", |
|
|
61 |
" b, a = butter_bandpass(lowcut, highcut, sampling_rate, order=order)\n", |
|
|
62 |
" y = lfilter(b, a, data)\n", |
|
|
63 |
" return y" |
|
|
64 |
] |
|
|
65 |
}, |
|
|
66 |
{ |
|
|
67 |
"cell_type": "code", |
|
|
68 |
"execution_count": 4, |
|
|
69 |
"metadata": { |
|
|
70 |
"collapsed": true |
|
|
71 |
}, |
|
|
72 |
"outputs": [], |
|
|
73 |
"source": [ |
|
|
74 |
"def open_eeg_mat(filename, centered=True):\n", |
|
|
75 |
" all_data = io.loadmat(filename)\n", |
|
|
76 |
" eeg_data = all_data['data_cur']\n", |
|
|
77 |
" if centered:\n", |
|
|
78 |
" eeg_data = eeg_data - np.mean(eeg_data,1)[np.newaxis].T\n", |
|
|
79 |
" print('Data were centered: channels are zero-mean')\n", |
|
|
80 |
" states_labels = all_data['states_cur']\n", |
|
|
81 |
" states_codes = list(np.unique(states_labels)[:])\n", |
|
|
82 |
" sampling_rate = all_data['srate']\n", |
|
|
83 |
" chan_names = all_data['chan_names']\n", |
|
|
84 |
" return eeg_data, states_labels, sampling_rate, chan_names, eeg_data.shape[0], eeg_data.shape[1], states_codes\n", |
|
|
85 |
"\n", |
|
|
86 |
"def butter_high_low_pass(lowcut, highcut, sampling_rate, order=5):\n", |
|
|
87 |
" nyq_freq = sampling_rate*0.5\n", |
|
|
88 |
" lower_bound = lowcut/nyq_freq\n", |
|
|
89 |
" higher_bound = highcut/nyq_freq\n", |
|
|
90 |
" b_high, a_high = butter(order, lower_bound, btype='high')\n", |
|
|
91 |
" b_low, a_low = butter(order, higher_bound, btype='low')\n", |
|
|
92 |
" return b_high, a_high, b_low, a_low\n", |
|
|
93 |
"\n", |
|
|
94 |
"def butter_bandpass_filter(data, lowcut, highcut, sampling_rate, order=5, how_to_filt = 'simultaneously'):\n", |
|
|
95 |
" if how_to_filt == 'separately':\n", |
|
|
96 |
" b_high, a_high, b_low, a_low = butter_high_low_pass(lowcut, highcut, sampling_rate, order=order)\n", |
|
|
97 |
" y = lfilter(b_high, a_high, data)\n", |
|
|
98 |
" y = lfilter(b_low, a_low, y)\n", |
|
|
99 |
" elif how_to_filt == 'simultaneously':\n", |
|
|
100 |
" b, a = butter_bandpass(lowcut, highcut, sampling_rate, order=order)\n", |
|
|
101 |
" y = lfilter(b, a, data)\n", |
|
|
102 |
" return y" |
|
|
103 |
] |
|
|
104 |
}, |
|
|
105 |
{ |
|
|
106 |
"cell_type": "code", |
|
|
107 |
"execution_count": 5, |
|
|
108 |
"metadata": { |
|
|
109 |
"collapsed": false |
|
|
110 |
}, |
|
|
111 |
"outputs": [ |
|
|
112 |
{ |
|
|
113 |
"name": "stdout", |
|
|
114 |
"output_type": "stream", |
|
|
115 |
"text": [ |
|
|
116 |
"[1 1 1 ..., 2 2 2]\n", |
|
|
117 |
"[1 1 1 ..., 6 6 6]\n", |
|
|
118 |
"[6 6 6 ..., 6 6 6]\n", |
|
|
119 |
"[1 1 1 ..., 6 6 6]\n", |
|
|
120 |
"[1 1 1 ..., 2 2 2]\n", |
|
|
121 |
"[1 1 1 ..., 2 2 2]\n", |
|
|
122 |
"[1 1 1 ..., 6 6 6]\n", |
|
|
123 |
"[1 1 1 ..., 6 6 6]\n", |
|
|
124 |
"[1 1 1 ..., 6 6 6]\n", |
|
|
125 |
"[6 6 6 ..., 6 6 6]\n", |
|
|
126 |
"[1 1 1 ..., 2 2 2]\n", |
|
|
127 |
"[1 1 1 ..., 2 2 2]\n", |
|
|
128 |
"[1 1 1 ..., 2 2 2]\n", |
|
|
129 |
"[1 1 1 ..., 6 6 6]\n", |
|
|
130 |
"[1 1 1 ..., 6 6 6]\n", |
|
|
131 |
"[6 6 6 ..., 6 6 6]\n", |
|
|
132 |
"[1 1 1 ..., 6 6 6]\n", |
|
|
133 |
"[1 1 1 ..., 2 2 2]\n", |
|
|
134 |
"[1 1 1 ..., 2 2 2]\n", |
|
|
135 |
"[6 6 6 ..., 2 2 2]\n" |
|
|
136 |
] |
|
|
137 |
} |
|
|
138 |
], |
|
|
139 |
"source": [ |
|
|
140 |
"train_datas = {}\n", |
|
|
141 |
"test_datas = {}\n", |
|
|
142 |
"\n", |
|
|
143 |
"def to_onehot(label):\n", |
|
|
144 |
" labels_encoding = {1: np.array([1,0,0]), 2: np.array([0,1,0]), 6: np.array([0,0,1])}\n", |
|
|
145 |
" return labels_encoding[label]\n", |
|
|
146 |
"\n", |
|
|
147 |
"for fname in os.listdir(datafolder):\n", |
|
|
148 |
" filename = datafolder + fname\n", |
|
|
149 |
" [eeg_data, states_labels, sampling_rate, chan_names, chan_numb, samp_numb, states_codes] = open_eeg_mat(filename, centered=False)\n", |
|
|
150 |
" sampling_rate = sampling_rate[0,0]\n", |
|
|
151 |
" eeg_data = butter_bandpass_filter(eeg_data, 0.5, 45, sampling_rate, order=5, how_to_filt = 'simultaneously')\n", |
|
|
152 |
" \n", |
|
|
153 |
" states_labels = states_labels[0]\n", |
|
|
154 |
" print(states_labels)\n", |
|
|
155 |
" states_labels = states_labels[2000:-2000]\n", |
|
|
156 |
" eeg_data = eeg_data[:,2000:-2000]\n", |
|
|
157 |
" \n", |
|
|
158 |
" experiment_name = \"_\".join(fname.split(\"_\")[:-1])\n", |
|
|
159 |
" if fname.endswith(\"_2.mat\"):\n", |
|
|
160 |
" test_datas[experiment_name] = {\"eeg_data\": eeg_data.T, \"labels\": states_labels}\n", |
|
|
161 |
" elif fname.endswith(\"_1.mat\"):\n", |
|
|
162 |
" train_datas[experiment_name] = {\"eeg_data\": eeg_data.T, \"labels\": states_labels}" |
|
|
163 |
] |
|
|
164 |
}, |
|
|
165 |
{ |
|
|
166 |
"cell_type": "code", |
|
|
167 |
"execution_count": 6, |
|
|
168 |
"metadata": { |
|
|
169 |
"collapsed": false |
|
|
170 |
}, |
|
|
171 |
"outputs": [], |
|
|
172 |
"source": [ |
|
|
173 |
"# separate scaling for each user, should not hurt \n", |
|
|
174 |
"from sklearn.preprocessing import StandardScaler\n", |
|
|
175 |
"\n", |
|
|
176 |
"for key in train_datas.keys():\n", |
|
|
177 |
" sc = StandardScaler()\n", |
|
|
178 |
" train_datas[key][\"eeg_data\"] = sc.fit_transform(train_datas[key][\"eeg_data\"])\n", |
|
|
179 |
" test_datas[key][\"eeg_data\"] = sc.fit_transform(test_datas[key][\"eeg_data\"])" |
|
|
180 |
] |
|
|
181 |
}, |
|
|
182 |
{ |
|
|
183 |
"cell_type": "code", |
|
|
184 |
"execution_count": 7, |
|
|
185 |
"metadata": { |
|
|
186 |
"collapsed": true |
|
|
187 |
}, |
|
|
188 |
"outputs": [], |
|
|
189 |
"source": [ |
|
|
190 |
"slice_len = 500" |
|
|
191 |
] |
|
|
192 |
}, |
|
|
193 |
{ |
|
|
194 |
"cell_type": "code", |
|
|
195 |
"execution_count": 8, |
|
|
196 |
"metadata": { |
|
|
197 |
"collapsed": true |
|
|
198 |
}, |
|
|
199 |
"outputs": [], |
|
|
200 |
"source": [ |
|
|
201 |
"def generate_slice(test=False):\n", |
|
|
202 |
" if test:\n", |
|
|
203 |
" experiment_data = random.choice(list(test_datas.values()))\n", |
|
|
204 |
" else:\n", |
|
|
205 |
" experiment_data = random.choice(list(train_datas.values()))\n", |
|
|
206 |
" \n", |
|
|
207 |
" X = experiment_data[\"eeg_data\"]\n", |
|
|
208 |
" y = experiment_data[\"labels\"]\n", |
|
|
209 |
" \n", |
|
|
210 |
" while True:\n", |
|
|
211 |
" slice_start = np.random.choice(len(X) - slice_len)\n", |
|
|
212 |
" slice_end = slice_start + slice_len\n", |
|
|
213 |
" slice_x = X[slice_start:slice_end]\n", |
|
|
214 |
" #slice_x = normalize(slice_x)\n", |
|
|
215 |
" slice_y = y[slice_start:slice_end]\n", |
|
|
216 |
" \n", |
|
|
217 |
" if len(set(slice_y)) == 1:\n", |
|
|
218 |
" return slice_x, to_onehot(slice_y[-1])" |
|
|
219 |
] |
|
|
220 |
}, |
|
|
221 |
{ |
|
|
222 |
"cell_type": "code", |
|
|
223 |
"execution_count": 9, |
|
|
224 |
"metadata": { |
|
|
225 |
"collapsed": false |
|
|
226 |
}, |
|
|
227 |
"outputs": [ |
|
|
228 |
{ |
|
|
229 |
"data": { |
|
|
230 |
"text/plain": [ |
|
|
231 |
"(500, 24)" |
|
|
232 |
] |
|
|
233 |
}, |
|
|
234 |
"execution_count": 9, |
|
|
235 |
"metadata": {}, |
|
|
236 |
"output_type": "execute_result" |
|
|
237 |
} |
|
|
238 |
], |
|
|
239 |
"source": [ |
|
|
240 |
"generate_slice()[0].shape" |
|
|
241 |
] |
|
|
242 |
}, |
|
|
243 |
{ |
|
|
244 |
"cell_type": "code", |
|
|
245 |
"execution_count": 10, |
|
|
246 |
"metadata": { |
|
|
247 |
"collapsed": true |
|
|
248 |
}, |
|
|
249 |
"outputs": [], |
|
|
250 |
"source": [ |
|
|
251 |
"def data_generator(batch_size, test=False):\n", |
|
|
252 |
" while True:\n", |
|
|
253 |
" batch_x = []\n", |
|
|
254 |
" batch_y = []\n", |
|
|
255 |
" \n", |
|
|
256 |
" for i in range(0, batch_size):\n", |
|
|
257 |
" x, y = generate_slice(test=test)\n", |
|
|
258 |
" batch_x.append(x)\n", |
|
|
259 |
" batch_y.append(y)\n", |
|
|
260 |
" \n", |
|
|
261 |
" y = np.array(batch_y)\n", |
|
|
262 |
" x = np.array([i for i in batch_x])\n", |
|
|
263 |
" yield (x, y)" |
|
|
264 |
] |
|
|
265 |
}, |
|
|
266 |
{ |
|
|
267 |
"cell_type": "code", |
|
|
268 |
"execution_count": 11, |
|
|
269 |
"metadata": { |
|
|
270 |
"collapsed": false |
|
|
271 |
}, |
|
|
272 |
"outputs": [ |
|
|
273 |
{ |
|
|
274 |
"name": "stderr", |
|
|
275 |
"output_type": "stream", |
|
|
276 |
"text": [ |
|
|
277 |
"Using TensorFlow backend.\n" |
|
|
278 |
] |
|
|
279 |
} |
|
|
280 |
], |
|
|
281 |
"source": [ |
|
|
282 |
"from keras.layers import Convolution1D, Dense, Dropout, Input, merge, GlobalMaxPooling1D, MaxPooling1D, Flatten, LSTM\n", |
|
|
283 |
"from keras.models import Model, load_model\n", |
|
|
284 |
"from keras.optimizers import RMSprop" |
|
|
285 |
] |
|
|
286 |
}, |
|
|
287 |
{ |
|
|
288 |
"cell_type": "code", |
|
|
289 |
"execution_count": 12, |
|
|
290 |
"metadata": { |
|
|
291 |
"collapsed": true |
|
|
292 |
}, |
|
|
293 |
"outputs": [], |
|
|
294 |
"source": [ |
|
|
295 |
"def get_base_model(input_len, fsize):\n", |
|
|
296 |
" '''Base network to be shared (eq. to feature extraction).\n", |
|
|
297 |
" '''\n", |
|
|
298 |
" input_seq = Input(shape=(input_len, 24))\n", |
|
|
299 |
" nb_filters = 50\n", |
|
|
300 |
" convolved = Convolution1D(nb_filters, 5, border_mode=\"same\", activation=\"tanh\")(input_seq)\n", |
|
|
301 |
" pooled = GlobalMaxPooling1D()(convolved)\n", |
|
|
302 |
" compressed = Dense(50, activation=\"linear\")(pooled)\n", |
|
|
303 |
" compressed = Dropout(0.3)(compressed)\n", |
|
|
304 |
" compressed = Dense(50, activation=\"relu\")(compressed)\n", |
|
|
305 |
" compressed = Dropout(0.3)(compressed)\n", |
|
|
306 |
" model = Model(input=input_seq, output=compressed) \n", |
|
|
307 |
" return model" |
|
|
308 |
] |
|
|
309 |
}, |
|
|
310 |
{ |
|
|
311 |
"cell_type": "code", |
|
|
312 |
"execution_count": 13, |
|
|
313 |
"metadata": { |
|
|
314 |
"collapsed": false |
|
|
315 |
}, |
|
|
316 |
"outputs": [], |
|
|
317 |
"source": [ |
|
|
318 |
"input1125_seq = Input(shape=(slice_len, 24))\n", |
|
|
319 |
"\n", |
|
|
320 |
"base_network1125 = get_base_model(slice_len, 10)\n", |
|
|
321 |
"\n", |
|
|
322 |
"embedding_1125 = base_network1125(input1125_seq)\n", |
|
|
323 |
"out = Dense(3, activation='softmax')(embedding_1125)\n", |
|
|
324 |
" \n", |
|
|
325 |
"model = Model(input=input1125_seq, output=out)\n", |
|
|
326 |
" \n", |
|
|
327 |
"model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"categorical_accuracy\"])" |
|
|
328 |
] |
|
|
329 |
}, |
|
|
330 |
{ |
|
|
331 |
"cell_type": "code", |
|
|
332 |
"execution_count": 14, |
|
|
333 |
"metadata": { |
|
|
334 |
"collapsed": false |
|
|
335 |
}, |
|
|
336 |
"outputs": [ |
|
|
337 |
{ |
|
|
338 |
"name": "stdout", |
|
|
339 |
"output_type": "stream", |
|
|
340 |
"text": [ |
|
|
341 |
"Epoch 1/1\n", |
|
|
342 |
"47s - loss: 0.8520 - categorical_accuracy: 0.5665 - val_loss: 0.7560 - val_categorical_accuracy: 0.6100\n" |
|
|
343 |
] |
|
|
344 |
}, |
|
|
345 |
{ |
|
|
346 |
"data": { |
|
|
347 |
"text/plain": [ |
|
|
348 |
"<keras.callbacks.History at 0x7f1f07163668>" |
|
|
349 |
] |
|
|
350 |
}, |
|
|
351 |
"execution_count": 14, |
|
|
352 |
"metadata": {}, |
|
|
353 |
"output_type": "execute_result" |
|
|
354 |
} |
|
|
355 |
], |
|
|
356 |
"source": [ |
|
|
357 |
"from keras.callbacks import EarlyStopping, ModelCheckpoint\n", |
|
|
358 |
"\n", |
|
|
359 |
"nb_epoch = 100000\n", |
|
|
360 |
"earlyStopping = EarlyStopping(monitor='categorical_accuracy', patience=10, verbose=0, mode='auto')\n", |
|
|
361 |
"checkpointer = ModelCheckpoint(\"convlstm_alldata.h5\", monitor='categorical_accuracy', verbose=0,\n", |
|
|
362 |
" save_best_only=True, mode='auto', period=1)\n", |
|
|
363 |
"\n", |
|
|
364 |
"samples_per_epoch = 15000\n", |
|
|
365 |
"nb_epoch = 1\n", |
|
|
366 |
"\n", |
|
|
367 |
"model.fit_generator(data_generator(batch_size=25), samples_per_epoch, nb_epoch, \n", |
|
|
368 |
" callbacks=[earlyStopping, checkpointer], verbose=2, nb_val_samples=15000,\n", |
|
|
369 |
" validation_data=data_generator(batch_size=25, test=True))" |
|
|
370 |
] |
|
|
371 |
} |
|
|
372 |
], |
|
|
373 |
"metadata": { |
|
|
374 |
"kernelspec": { |
|
|
375 |
"display_name": "Python 3", |
|
|
376 |
"language": "python", |
|
|
377 |
"name": "python3" |
|
|
378 |
}, |
|
|
379 |
"language_info": { |
|
|
380 |
"codemirror_mode": { |
|
|
381 |
"name": "ipython", |
|
|
382 |
"version": 3 |
|
|
383 |
}, |
|
|
384 |
"file_extension": ".py", |
|
|
385 |
"mimetype": "text/x-python", |
|
|
386 |
"name": "python", |
|
|
387 |
"nbconvert_exporter": "python", |
|
|
388 |
"pygments_lexer": "ipython3", |
|
|
389 |
"version": "3.5.2" |
|
|
390 |
} |
|
|
391 |
}, |
|
|
392 |
"nbformat": 4, |
|
|
393 |
"nbformat_minor": 2 |
|
|
394 |
} |