|
a |
|
b/MultiscaleNet.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"metadata": { |
|
|
7 |
"collapsed": true |
|
|
8 |
}, |
|
|
9 |
"outputs": [], |
|
|
10 |
"source": [ |
|
|
11 |
"%matplotlib inline\n", |
|
|
12 |
"import pandas as pd\n", |
|
|
13 |
"import numpy as np\n", |
|
|
14 |
"from cdtw import pydtw\n", |
|
|
15 |
"import seaborn as sns\n", |
|
|
16 |
"from tqdm import tqdm\n", |
|
|
17 |
"import os\n", |
|
|
18 |
"import json\n", |
|
|
19 |
"import h5py" |
|
|
20 |
] |
|
|
21 |
}, |
|
|
22 |
{ |
|
|
23 |
"cell_type": "code", |
|
|
24 |
"execution_count": 2, |
|
|
25 |
"metadata": { |
|
|
26 |
"collapsed": false |
|
|
27 |
}, |
|
|
28 |
"outputs": [ |
|
|
29 |
{ |
|
|
30 |
"name": "stderr", |
|
|
31 |
"output_type": "stream", |
|
|
32 |
"text": [ |
|
|
33 |
"Using TensorFlow backend.\n" |
|
|
34 |
] |
|
|
35 |
} |
|
|
36 |
], |
|
|
37 |
"source": [ |
|
|
38 |
"from keras import backend as K\n", |
|
|
39 |
"from keras.regularizers import l2, activity_l2\n", |
|
|
40 |
"\n", |
|
|
41 |
"from keras import backend as K\n", |
|
|
42 |
"from keras.engine.topology import Layer\n", |
|
|
43 |
"from keras.optimizers import RMSprop, SGD, Adam\n", |
|
|
44 |
"from keras.layers.core import Dense, Dropout, Activation, Flatten, Lambda, Merge\n", |
|
|
45 |
"from keras.layers.recurrent import LSTM, GRU\n", |
|
|
46 |
"from keras.models import Sequential, Model, load_model\n", |
|
|
47 |
"from keras.layers import Input, Bidirectional, merge\n", |
|
|
48 |
"from keras.layers.convolutional import Convolution1D, AtrousConvolution1D\n", |
|
|
49 |
"from keras.layers.pooling import MaxPooling1D, AveragePooling1D, GlobalMaxPooling1D" |
|
|
50 |
] |
|
|
51 |
}, |
|
|
52 |
{ |
|
|
53 |
"cell_type": "code", |
|
|
54 |
"execution_count": 3, |
|
|
55 |
"metadata": { |
|
|
56 |
"collapsed": true |
|
|
57 |
}, |
|
|
58 |
"outputs": [], |
|
|
59 |
"source": [ |
|
|
60 |
"def read_train(fname):\n", |
|
|
61 |
" subjects = {}\n", |
|
|
62 |
" with h5py.File(fname, \"r\") as data_file:\n", |
|
|
63 |
" for subject, subject_data in data_file.items():\n", |
|
|
64 |
" print(subject)\n", |
|
|
65 |
" X = subject_data[\"data\"][:]\n", |
|
|
66 |
" y = subject_data[\"labels\"][:]\n", |
|
|
67 |
" subjects[subject] = (X, y)\n", |
|
|
68 |
" return subjects\n", |
|
|
69 |
"\n", |
|
|
70 |
"def read_test(fname):\n", |
|
|
71 |
" subjects = {}\n", |
|
|
72 |
" with h5py.File(fname, \"r\") as data_file:\n", |
|
|
73 |
" X = {}\n", |
|
|
74 |
" for subject, subject_data in data_file.items():\n", |
|
|
75 |
" X[subject] = {}\n", |
|
|
76 |
" for chunk_id, chunk in data_file[subject].items():\n", |
|
|
77 |
" X[subject][chunk_id] = chunk[:]\n", |
|
|
78 |
"\n", |
|
|
79 |
" return X\n", |
|
|
80 |
"\n", |
|
|
81 |
"def batch(ts, y, n=1):\n", |
|
|
82 |
" l = len(ts)\n", |
|
|
83 |
" for ndx in range(0, l-n, 1):\n", |
|
|
84 |
" yield (ts[ndx:min(ndx + n, l)], y[ndx:min(ndx + n, l)])\n", |
|
|
85 |
"\n", |
|
|
86 |
"def label_batch(batch):\n", |
|
|
87 |
" if all([i == 1 for i in batch[1]]):\n", |
|
|
88 |
" return 1\n", |
|
|
89 |
" elif all([i == 0 for i in batch[1]]):\n", |
|
|
90 |
" return 0\n", |
|
|
91 |
" elif all([i == 2 for i in batch[1]]):\n", |
|
|
92 |
" return 2\n", |
|
|
93 |
" return -1\n", |
|
|
94 |
" \n", |
|
|
95 |
"def get_data():\n", |
|
|
96 |
" train = read_train(\"train.h5\")\n", |
|
|
97 |
" test = read_test(\"test.h5\")\n", |
|
|
98 |
" \n", |
|
|
99 |
"\n", |
|
|
100 |
" subject_datas = {}\n", |
|
|
101 |
" for subject, data in tqdm(train.items()):\n", |
|
|
102 |
" subject_ts = data[0].T\n", |
|
|
103 |
" subject_y = data[1][0]\n", |
|
|
104 |
" batches = [i for i in batch(subject_ts, subject_y, n=1125)]\n", |
|
|
105 |
" batches = [(i[0], label_batch(i)) for i in batches]\n", |
|
|
106 |
" batches = [i for i in batches if i[1] != -1]\n", |
|
|
107 |
" batches = [i for i in batches if len(i[0]) == 1125]\n", |
|
|
108 |
" subject_datas[subject] = batches\n", |
|
|
109 |
" \n", |
|
|
110 |
" X = []\n", |
|
|
111 |
" y = []\n", |
|
|
112 |
" for subj, subj_data in tqdm(subject_datas.items()):\n", |
|
|
113 |
" X.extend([i[0] for i in subj_data])\n", |
|
|
114 |
" y.extend([i[1] for i in subj_data])\n", |
|
|
115 |
" return X, y, test" |
|
|
116 |
] |
|
|
117 |
}, |
|
|
118 |
{ |
|
|
119 |
"cell_type": "code", |
|
|
120 |
"execution_count": 4, |
|
|
121 |
"metadata": { |
|
|
122 |
"collapsed": false |
|
|
123 |
}, |
|
|
124 |
"outputs": [ |
|
|
125 |
{ |
|
|
126 |
"name": "stdout", |
|
|
127 |
"output_type": "stream", |
|
|
128 |
"text": [ |
|
|
129 |
"subject_0\n", |
|
|
130 |
"subject_1\n", |
|
|
131 |
"subject_2\n", |
|
|
132 |
"subject_3\n" |
|
|
133 |
] |
|
|
134 |
}, |
|
|
135 |
{ |
|
|
136 |
"name": "stderr", |
|
|
137 |
"output_type": "stream", |
|
|
138 |
"text": [ |
|
|
139 |
"100%|██████████| 4/4 [01:14<00:00, 19.86s/it]\n", |
|
|
140 |
"100%|██████████| 4/4 [00:00<00:00, 145.58it/s]\n" |
|
|
141 |
] |
|
|
142 |
} |
|
|
143 |
], |
|
|
144 |
"source": [ |
|
|
145 |
"X, y, test = get_data()" |
|
|
146 |
] |
|
|
147 |
}, |
|
|
148 |
{ |
|
|
149 |
"cell_type": "code", |
|
|
150 |
"execution_count": 5, |
|
|
151 |
"metadata": { |
|
|
152 |
"collapsed": false |
|
|
153 |
}, |
|
|
154 |
"outputs": [], |
|
|
155 |
"source": [ |
|
|
156 |
"X = np.array(X)\n", |
|
|
157 |
"y = np.array(y)" |
|
|
158 |
] |
|
|
159 |
}, |
|
|
160 |
{ |
|
|
161 |
"cell_type": "code", |
|
|
162 |
"execution_count": 6, |
|
|
163 |
"metadata": { |
|
|
164 |
"collapsed": true |
|
|
165 |
}, |
|
|
166 |
"outputs": [], |
|
|
167 |
"source": [ |
|
|
168 |
"def shuffle_in_unison_scary(a, b):\n", |
|
|
169 |
" rng_state = np.random.get_state()\n", |
|
|
170 |
" np.random.shuffle(a)\n", |
|
|
171 |
" np.random.set_state(rng_state)\n", |
|
|
172 |
" np.random.shuffle(b)" |
|
|
173 |
] |
|
|
174 |
}, |
|
|
175 |
{ |
|
|
176 |
"cell_type": "code", |
|
|
177 |
"execution_count": 7, |
|
|
178 |
"metadata": { |
|
|
179 |
"collapsed": true |
|
|
180 |
}, |
|
|
181 |
"outputs": [], |
|
|
182 |
"source": [ |
|
|
183 |
"shuffle_in_unison_scary(X, y)" |
|
|
184 |
] |
|
|
185 |
}, |
|
|
186 |
{ |
|
|
187 |
"cell_type": "code", |
|
|
188 |
"execution_count": 8, |
|
|
189 |
"metadata": { |
|
|
190 |
"collapsed": false |
|
|
191 |
}, |
|
|
192 |
"outputs": [], |
|
|
193 |
"source": [ |
|
|
194 |
"validation_start = len(X) - 30\n", |
|
|
195 |
"X_train = X[:validation_start]\n", |
|
|
196 |
"y_train = y[:validation_start]\n", |
|
|
197 |
"X_val = X[validation_start:]\n", |
|
|
198 |
"y_val = y[validation_start:]" |
|
|
199 |
] |
|
|
200 |
}, |
|
|
201 |
{ |
|
|
202 |
"cell_type": "code", |
|
|
203 |
"execution_count": 9, |
|
|
204 |
"metadata": { |
|
|
205 |
"collapsed": true |
|
|
206 |
}, |
|
|
207 |
"outputs": [], |
|
|
208 |
"source": [ |
|
|
209 |
"from scipy.signal import resample\n", |
|
|
210 |
"\n", |
|
|
211 |
"\n", |
|
|
212 |
"def toarr(label):\n", |
|
|
213 |
" arr = np.zeros(3)\n", |
|
|
214 |
" arr[label] = 1\n", |
|
|
215 |
" return arr\n", |
|
|
216 |
"\n", |
|
|
217 |
"def data_generator(X, Y, batch_size):\n", |
|
|
218 |
" while True:\n", |
|
|
219 |
" inds = np.random.choice(len(X), batch_size)\n", |
|
|
220 |
" x = X[inds]\n", |
|
|
221 |
" y = Y[inds]\n", |
|
|
222 |
" y = np.vstack([toarr(i) for i in y])\n", |
|
|
223 |
" x_256 = np.array([resample(i, 256) for i in x])\n", |
|
|
224 |
" x_500 = np.array([resample(i, 500) for i in x])\n", |
|
|
225 |
" x = np.array([i for i in x])\n", |
|
|
226 |
" yield ([x_256, x_500, x], y)" |
|
|
227 |
] |
|
|
228 |
}, |
|
|
229 |
{ |
|
|
230 |
"cell_type": "code", |
|
|
231 |
"execution_count": 10, |
|
|
232 |
"metadata": { |
|
|
233 |
"collapsed": true |
|
|
234 |
}, |
|
|
235 |
"outputs": [], |
|
|
236 |
"source": [ |
|
|
237 |
"def multiscale(chunk):\n", |
|
|
238 |
" resampled_256 = resample(chunk, 256)\n", |
|
|
239 |
" resampled_500 = resample(chunk, 500)\n", |
|
|
240 |
" return [resampled_256, resampled_500, chunk]" |
|
|
241 |
] |
|
|
242 |
}, |
|
|
243 |
{ |
|
|
244 |
"cell_type": "code", |
|
|
245 |
"execution_count": null, |
|
|
246 |
"metadata": { |
|
|
247 |
"collapsed": true |
|
|
248 |
}, |
|
|
249 |
"outputs": [], |
|
|
250 |
"source": [ |
|
|
251 |
"def get_base_model(input_len, fsize):\n", |
|
|
252 |
" '''Base network to be shared (eq. to feature extraction).\n", |
|
|
253 |
" '''\n", |
|
|
254 |
" with K.tf.device('/gpu:1'):\n", |
|
|
255 |
" input_seq = Input(shape=(input_len, 24))\n", |
|
|
256 |
" nb_filters = 150\n", |
|
|
257 |
" convolved = Convolution1D(nb_filters, fsize, border_mode=\"same\", activation=\"tanh\")(input_seq)\n", |
|
|
258 |
" processed = GlobalMaxPooling1D()(convolved)\n", |
|
|
259 |
" compressed = Dense(150, activation=\"tanh\")(processed)\n", |
|
|
260 |
" compressed = Dropout(0.3)(compressed)\n", |
|
|
261 |
" compressed = Dense(150, activation=\"tanh\")(compressed)\n", |
|
|
262 |
" model = Model(input=input_seq, output=compressed) \n", |
|
|
263 |
" return model" |
|
|
264 |
] |
|
|
265 |
}, |
|
|
266 |
{ |
|
|
267 |
"cell_type": "code", |
|
|
268 |
"execution_count": null, |
|
|
269 |
"metadata": { |
|
|
270 |
"collapsed": false |
|
|
271 |
}, |
|
|
272 |
"outputs": [], |
|
|
273 |
"source": [ |
|
|
274 |
"with K.tf.device('/gpu:1'):\n", |
|
|
275 |
" \n", |
|
|
276 |
" input256_seq = Input(shape=(256, 24))\n", |
|
|
277 |
" input500_seq = Input(shape=(500, 24))\n", |
|
|
278 |
" input1125_seq = Input(shape=(1125, 24))\n", |
|
|
279 |
" \n", |
|
|
280 |
" base_network256 = get_base_model(256, 4)\n", |
|
|
281 |
" base_network500 = get_base_model(500, 7)\n", |
|
|
282 |
" base_network1125 = get_base_model(1125, 10)\n", |
|
|
283 |
" \n", |
|
|
284 |
" embedding_256 = base_network256(input256_seq)\n", |
|
|
285 |
" embedding_500 = base_network500(input500_seq)\n", |
|
|
286 |
" embedding_1125 = base_network256(input1125_seq)\n", |
|
|
287 |
" \n", |
|
|
288 |
" merged = merge([embedding_256, embedding_500, embedding_1125], mode=\"concat\")\n", |
|
|
289 |
" out = Dense(3, activation='softmax')(merged)\n", |
|
|
290 |
" \n", |
|
|
291 |
" model = Model(input=[input256_seq, input500_seq, input1125_seq], output=out)\n", |
|
|
292 |
" \n", |
|
|
293 |
" #opt = SGD(lr=0.001, momentum=0.9, nesterov=True, clipvalue=0.0001)\n", |
|
|
294 |
" opt = RMSprop(lr=0.005, clipvalue=10**6)\n", |
|
|
295 |
" #opt = Adam(lr=0.001)\n", |
|
|
296 |
" model.compile(loss=\"categorical_crossentropy\", optimizer=opt)" |
|
|
297 |
] |
|
|
298 |
}, |
|
|
299 |
{ |
|
|
300 |
"cell_type": "code", |
|
|
301 |
"execution_count": 13, |
|
|
302 |
"metadata": { |
|
|
303 |
"collapsed": true |
|
|
304 |
}, |
|
|
305 |
"outputs": [], |
|
|
306 |
"source": [ |
|
|
307 |
"with K.tf.device('/gpu:2'):\n", |
|
|
308 |
" model = load_model(\"convnet-multiscale-true-022unk\")" |
|
|
309 |
] |
|
|
310 |
}, |
|
|
311 |
{ |
|
|
312 |
"cell_type": "code", |
|
|
313 |
"execution_count": 21, |
|
|
314 |
"metadata": { |
|
|
315 |
"collapsed": false |
|
|
316 |
}, |
|
|
317 |
"outputs": [ |
|
|
318 |
{ |
|
|
319 |
"name": "stdout", |
|
|
320 |
"output_type": "stream", |
|
|
321 |
"text": [ |
|
|
322 |
"Epoch 1/100000\n", |
|
|
323 |
"100000/100000 [==============================] - 135s - loss: 0.1939 \n", |
|
|
324 |
"Epoch 2/100000\n", |
|
|
325 |
" 99500/100000 [============================>.] - ETA: 0s - loss: 0.1922" |
|
|
326 |
] |
|
|
327 |
}, |
|
|
328 |
{ |
|
|
329 |
"ename": "KeyboardInterrupt", |
|
|
330 |
"evalue": "", |
|
|
331 |
"output_type": "error", |
|
|
332 |
"traceback": [ |
|
|
333 |
"\u001b[0;31m\u001b[0m", |
|
|
334 |
"\u001b[0;31mKeyboardInterrupt\u001b[0mTraceback (most recent call last)", |
|
|
335 |
"\u001b[0;32m<ipython-input-21-09ad3c297605>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mK\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'/gpu:2'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m model.fit_generator(data_generator(X_train, y_train, batch_size=50), samples_per_epoch, nb_epoch, \n\u001b[0;32m----> 8\u001b[0;31m callbacks=[earlyStopping], verbose=1)#, nb_val_samples=20000,\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;31m#validation_data=data_generator(X_val, y_val, batch_size=40))\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
336 |
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/engine/training.pyc\u001b[0m in \u001b[0;36mfit_generator\u001b[0;34m(self, generator, samples_per_epoch, nb_epoch, verbose, callbacks, validation_data, nb_val_samples, class_weight, max_q_size, nb_worker, pickle_safe)\u001b[0m\n\u001b[1;32m 1451\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0ml\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mo\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1452\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1453\u001b[0;31m \u001b[0mcallbacks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_batch_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch_index\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_logs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1454\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1455\u001b[0m \u001b[0;31m# construct epoch logs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
337 |
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/callbacks.pyc\u001b[0m in \u001b[0;36mon_batch_end\u001b[0;34m(self, batch, logs)\u001b[0m\n\u001b[1;32m 59\u001b[0m \u001b[0mt_before_callbacks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mcallback\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcallbacks\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 61\u001b[0;31m \u001b[0mcallback\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_batch_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 62\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_delta_ts_batch_end\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mt_before_callbacks\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0mdelta_t_median\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmedian\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_delta_ts_batch_end\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
338 |
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/callbacks.pyc\u001b[0m in \u001b[0;36mon_batch_end\u001b[0;34m(self, batch, logs)\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[0;31m# will be handled by on_epoch_end\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 188\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mverbose\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mseen\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mparams\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'nb_sample'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 189\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprogbar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mseen\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlog_values\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 190\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 191\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mon_epoch_end\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepoch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlogs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
339 |
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/keras/utils/generic_utils.pyc\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, current, values, force)\u001b[0m\n\u001b[1;32m 157\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 158\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstdout\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 159\u001b[0;31m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstdout\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mflush\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 160\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 161\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcurrent\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtarget\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
340 |
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/ipykernel/iostream.pyc\u001b[0m in \u001b[0;36mflush\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 267\u001b[0m \u001b[0mevt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mthreading\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mEvent\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 268\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_io_loop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_callback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mevt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 269\u001b[0;31m \u001b[0mevt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 270\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 271\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_flush\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
341 |
"\u001b[0;32m/usr/lib/python2.7/threading.pyc\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 618\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 619\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__flag\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 620\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__cond\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 621\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__flag\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 622\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
342 |
"\u001b[0;32m/usr/lib/python2.7/threading.pyc\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 337\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# restore state no matter what (e.g., KeyboardInterrupt)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 338\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 339\u001b[0;31m \u001b[0mwaiter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0macquire\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 340\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m__debug__\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 341\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_note\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"%s.wait(): got it\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
343 |
"\u001b[0;31mKeyboardInterrupt\u001b[0m: " |
|
|
344 |
] |
|
|
345 |
} |
|
|
346 |
], |
|
|
347 |
"source": [ |
|
|
348 |
"from keras.callbacks import EarlyStopping\n", |
|
|
349 |
"nb_epoch = 100000\n", |
|
|
350 |
"earlyStopping = EarlyStopping(monitor='val_loss', patience=10, verbose=0, mode='auto')\n", |
|
|
351 |
"samples_per_epoch = 100000\n", |
|
|
352 |
"\n", |
|
|
353 |
"with K.tf.device('/gpu:2'):\n", |
|
|
354 |
" model.fit_generator(data_generator(X_train, y_train, batch_size=50), samples_per_epoch, nb_epoch, \n", |
|
|
355 |
" callbacks=[earlyStopping], verbose=1)#, nb_val_samples=20000,\n", |
|
|
356 |
" #validation_data=data_generator(X_val, y_val, batch_size=40))" |
|
|
357 |
] |
|
|
358 |
}, |
|
|
359 |
{ |
|
|
360 |
"cell_type": "code", |
|
|
361 |
"execution_count": 26, |
|
|
362 |
"metadata": { |
|
|
363 |
"collapsed": false |
|
|
364 |
}, |
|
|
365 |
"outputs": [ |
|
|
366 |
{ |
|
|
367 |
"name": "stdout", |
|
|
368 |
"output_type": "stream", |
|
|
369 |
"text": [ |
|
|
370 |
"Epoch 1/1\n", |
|
|
371 |
"30000/30000 [==============================] - 70s - loss: 0.1640 " |
|
|
372 |
] |
|
|
373 |
}, |
|
|
374 |
{ |
|
|
375 |
"name": "stderr", |
|
|
376 |
"output_type": "stream", |
|
|
377 |
"text": [ |
|
|
378 |
" 24%|██▍ | 12/49 [00:00<00:00, 119.99it/s]" |
|
|
379 |
] |
|
|
380 |
}, |
|
|
381 |
{ |
|
|
382 |
"name": "stdout", |
|
|
383 |
"output_type": "stream", |
|
|
384 |
"text": [ |
|
|
385 |
"\n" |
|
|
386 |
] |
|
|
387 |
}, |
|
|
388 |
{ |
|
|
389 |
"name": "stderr", |
|
|
390 |
"output_type": "stream", |
|
|
391 |
"text": [ |
|
|
392 |
"100%|██████████| 49/49 [00:00<00:00, 135.88it/s]\n", |
|
|
393 |
"100%|██████████| 89/89 [00:00<00:00, 215.36it/s]\n", |
|
|
394 |
"100%|██████████| 49/49 [00:00<00:00, 248.00it/s]\n", |
|
|
395 |
"100%|██████████| 89/89 [00:00<00:00, 219.17it/s]\n" |
|
|
396 |
] |
|
|
397 |
}, |
|
|
398 |
{ |
|
|
399 |
"name": "stdout", |
|
|
400 |
"output_type": "stream", |
|
|
401 |
"text": [ |
|
|
402 |
"Epoch 1/1\n", |
|
|
403 |
"30000/30000 [==============================] - 67s - loss: 0.1592 " |
|
|
404 |
] |
|
|
405 |
}, |
|
|
406 |
{ |
|
|
407 |
"name": "stderr", |
|
|
408 |
"output_type": "stream", |
|
|
409 |
"text": [ |
|
|
410 |
"\r", |
|
|
411 |
" 0%| | 0/49 [00:00<?, ?it/s]" |
|
|
412 |
] |
|
|
413 |
}, |
|
|
414 |
{ |
|
|
415 |
"name": "stdout", |
|
|
416 |
"output_type": "stream", |
|
|
417 |
"text": [ |
|
|
418 |
"\n" |
|
|
419 |
] |
|
|
420 |
}, |
|
|
421 |
{ |
|
|
422 |
"name": "stderr", |
|
|
423 |
"output_type": "stream", |
|
|
424 |
"text": [ |
|
|
425 |
"100%|██████████| 49/49 [00:00<00:00, 126.00it/s]\n", |
|
|
426 |
"100%|██████████| 89/89 [00:00<00:00, 190.92it/s]\n", |
|
|
427 |
"100%|██████████| 49/49 [00:00<00:00, 161.84it/s]\n", |
|
|
428 |
"100%|██████████| 89/89 [00:00<00:00, 190.56it/s]\n" |
|
|
429 |
] |
|
|
430 |
}, |
|
|
431 |
{ |
|
|
432 |
"name": "stdout", |
|
|
433 |
"output_type": "stream", |
|
|
434 |
"text": [ |
|
|
435 |
"Epoch 1/1\n", |
|
|
436 |
"30000/30000 [==============================] - 60s - loss: 0.1557 " |
|
|
437 |
] |
|
|
438 |
}, |
|
|
439 |
{ |
|
|
440 |
"name": "stderr", |
|
|
441 |
"output_type": "stream", |
|
|
442 |
"text": [ |
|
|
443 |
"\r", |
|
|
444 |
" 0%| | 0/49 [00:00<?, ?it/s]" |
|
|
445 |
] |
|
|
446 |
}, |
|
|
447 |
{ |
|
|
448 |
"name": "stdout", |
|
|
449 |
"output_type": "stream", |
|
|
450 |
"text": [ |
|
|
451 |
"\n" |
|
|
452 |
] |
|
|
453 |
}, |
|
|
454 |
{ |
|
|
455 |
"name": "stderr", |
|
|
456 |
"output_type": "stream", |
|
|
457 |
"text": [ |
|
|
458 |
"100%|██████████| 49/49 [00:00<00:00, 175.59it/s]\n", |
|
|
459 |
"100%|██████████| 89/89 [00:00<00:00, 188.29it/s]\n", |
|
|
460 |
"100%|██████████| 49/49 [00:00<00:00, 170.44it/s]\n", |
|
|
461 |
"100%|██████████| 89/89 [00:00<00:00, 202.76it/s]\n" |
|
|
462 |
] |
|
|
463 |
}, |
|
|
464 |
{ |
|
|
465 |
"name": "stdout", |
|
|
466 |
"output_type": "stream", |
|
|
467 |
"text": [ |
|
|
468 |
"Epoch 1/1\n", |
|
|
469 |
"30000/30000 [==============================] - 73s - loss: 0.1545 " |
|
|
470 |
] |
|
|
471 |
}, |
|
|
472 |
{ |
|
|
473 |
"name": "stderr", |
|
|
474 |
"output_type": "stream", |
|
|
475 |
"text": [ |
|
|
476 |
" 29%|██▊ | 14/49 [00:00<00:00, 139.19it/s]" |
|
|
477 |
] |
|
|
478 |
}, |
|
|
479 |
{ |
|
|
480 |
"name": "stdout", |
|
|
481 |
"output_type": "stream", |
|
|
482 |
"text": [ |
|
|
483 |
"\n" |
|
|
484 |
] |
|
|
485 |
}, |
|
|
486 |
{ |
|
|
487 |
"name": "stderr", |
|
|
488 |
"output_type": "stream", |
|
|
489 |
"text": [ |
|
|
490 |
"100%|██████████| 49/49 [00:00<00:00, 190.23it/s]\n", |
|
|
491 |
"100%|██████████| 89/89 [00:00<00:00, 235.47it/s]\n", |
|
|
492 |
"100%|██████████| 49/49 [00:00<00:00, 221.90it/s]\n", |
|
|
493 |
"100%|██████████| 89/89 [00:00<00:00, 171.74it/s]\n" |
|
|
494 |
] |
|
|
495 |
}, |
|
|
496 |
{ |
|
|
497 |
"name": "stdout", |
|
|
498 |
"output_type": "stream", |
|
|
499 |
"text": [ |
|
|
500 |
"Epoch 1/1\n", |
|
|
501 |
"30000/30000 [==============================] - 72s - loss: 0.1556 " |
|
|
502 |
] |
|
|
503 |
}, |
|
|
504 |
{ |
|
|
505 |
"name": "stderr", |
|
|
506 |
"output_type": "stream", |
|
|
507 |
"text": [ |
|
|
508 |
"\r", |
|
|
509 |
" 0%| | 0/49 [00:00<?, ?it/s]" |
|
|
510 |
] |
|
|
511 |
}, |
|
|
512 |
{ |
|
|
513 |
"name": "stdout", |
|
|
514 |
"output_type": "stream", |
|
|
515 |
"text": [ |
|
|
516 |
"\n" |
|
|
517 |
] |
|
|
518 |
}, |
|
|
519 |
{ |
|
|
520 |
"name": "stderr", |
|
|
521 |
"output_type": "stream", |
|
|
522 |
"text": [ |
|
|
523 |
"100%|██████████| 49/49 [00:00<00:00, 119.83it/s]\n", |
|
|
524 |
"100%|██████████| 89/89 [00:00<00:00, 195.06it/s]\n", |
|
|
525 |
"100%|██████████| 49/49 [00:00<00:00, 187.22it/s]\n", |
|
|
526 |
"100%|██████████| 89/89 [00:00<00:00, 201.47it/s]\n" |
|
|
527 |
] |
|
|
528 |
}, |
|
|
529 |
{ |
|
|
530 |
"name": "stdout", |
|
|
531 |
"output_type": "stream", |
|
|
532 |
"text": [ |
|
|
533 |
"Epoch 1/1\n", |
|
|
534 |
"30000/30000 [==============================] - 68s - loss: 0.1563 " |
|
|
535 |
] |
|
|
536 |
}, |
|
|
537 |
{ |
|
|
538 |
"name": "stderr", |
|
|
539 |
"output_type": "stream", |
|
|
540 |
"text": [ |
|
|
541 |
" 27%|██▋ | 13/49 [00:00<00:00, 119.17it/s]" |
|
|
542 |
] |
|
|
543 |
}, |
|
|
544 |
{ |
|
|
545 |
"name": "stdout", |
|
|
546 |
"output_type": "stream", |
|
|
547 |
"text": [ |
|
|
548 |
"\n" |
|
|
549 |
] |
|
|
550 |
}, |
|
|
551 |
{ |
|
|
552 |
"name": "stderr", |
|
|
553 |
"output_type": "stream", |
|
|
554 |
"text": [ |
|
|
555 |
"100%|██████████| 49/49 [00:00<00:00, 142.53it/s]\n", |
|
|
556 |
"100%|██████████| 89/89 [00:00<00:00, 203.55it/s]\n", |
|
|
557 |
"100%|██████████| 49/49 [00:00<00:00, 192.02it/s]\n", |
|
|
558 |
"100%|██████████| 89/89 [00:00<00:00, 193.69it/s]\n" |
|
|
559 |
] |
|
|
560 |
}, |
|
|
561 |
{ |
|
|
562 |
"name": "stdout", |
|
|
563 |
"output_type": "stream", |
|
|
564 |
"text": [ |
|
|
565 |
"Epoch 1/1\n", |
|
|
566 |
"30000/30000 [==============================] - 72s - loss: 0.1588 " |
|
|
567 |
] |
|
|
568 |
}, |
|
|
569 |
{ |
|
|
570 |
"name": "stderr", |
|
|
571 |
"output_type": "stream", |
|
|
572 |
"text": [ |
|
|
573 |
" 31%|███ | 15/49 [00:00<00:00, 145.08it/s]" |
|
|
574 |
] |
|
|
575 |
}, |
|
|
576 |
{ |
|
|
577 |
"name": "stdout", |
|
|
578 |
"output_type": "stream", |
|
|
579 |
"text": [ |
|
|
580 |
"\n" |
|
|
581 |
] |
|
|
582 |
}, |
|
|
583 |
{ |
|
|
584 |
"name": "stderr", |
|
|
585 |
"output_type": "stream", |
|
|
586 |
"text": [ |
|
|
587 |
"100%|██████████| 49/49 [00:00<00:00, 181.02it/s]\n", |
|
|
588 |
"100%|██████████| 89/89 [00:00<00:00, 199.11it/s]\n", |
|
|
589 |
"100%|██████████| 49/49 [00:00<00:00, 229.50it/s]\n", |
|
|
590 |
"100%|██████████| 89/89 [00:00<00:00, 204.20it/s]\n" |
|
|
591 |
] |
|
|
592 |
}, |
|
|
593 |
{ |
|
|
594 |
"name": "stdout", |
|
|
595 |
"output_type": "stream", |
|
|
596 |
"text": [ |
|
|
597 |
"Epoch 1/1\n", |
|
|
598 |
"30000/30000 [==============================] - 67s - loss: 0.1598 " |
|
|
599 |
] |
|
|
600 |
}, |
|
|
601 |
{ |
|
|
602 |
"name": "stderr", |
|
|
603 |
"output_type": "stream", |
|
|
604 |
"text": [ |
|
|
605 |
" 37%|███▋ | 18/49 [00:00<00:00, 174.26it/s]" |
|
|
606 |
] |
|
|
607 |
}, |
|
|
608 |
{ |
|
|
609 |
"name": "stdout", |
|
|
610 |
"output_type": "stream", |
|
|
611 |
"text": [ |
|
|
612 |
"\n" |
|
|
613 |
] |
|
|
614 |
}, |
|
|
615 |
{ |
|
|
616 |
"name": "stderr", |
|
|
617 |
"output_type": "stream", |
|
|
618 |
"text": [ |
|
|
619 |
"100%|██████████| 49/49 [00:00<00:00, 130.09it/s]\n", |
|
|
620 |
"100%|██████████| 89/89 [00:00<00:00, 208.28it/s]\n", |
|
|
621 |
"100%|██████████| 49/49 [00:00<00:00, 189.43it/s]\n", |
|
|
622 |
"100%|██████████| 89/89 [00:00<00:00, 181.52it/s]\n" |
|
|
623 |
] |
|
|
624 |
}, |
|
|
625 |
{ |
|
|
626 |
"name": "stdout", |
|
|
627 |
"output_type": "stream", |
|
|
628 |
"text": [ |
|
|
629 |
"Epoch 1/1\n", |
|
|
630 |
"30000/30000 [==============================] - 53s - loss: 0.1634 " |
|
|
631 |
] |
|
|
632 |
}, |
|
|
633 |
{ |
|
|
634 |
"name": "stderr", |
|
|
635 |
"output_type": "stream", |
|
|
636 |
"text": [ |
|
|
637 |
" 41%|████ | 20/49 [00:00<00:00, 191.91it/s]" |
|
|
638 |
] |
|
|
639 |
}, |
|
|
640 |
{ |
|
|
641 |
"name": "stdout", |
|
|
642 |
"output_type": "stream", |
|
|
643 |
"text": [ |
|
|
644 |
"\n" |
|
|
645 |
] |
|
|
646 |
}, |
|
|
647 |
{ |
|
|
648 |
"name": "stderr", |
|
|
649 |
"output_type": "stream", |
|
|
650 |
"text": [ |
|
|
651 |
"100%|██████████| 49/49 [00:00<00:00, 202.34it/s]\n", |
|
|
652 |
"100%|██████████| 89/89 [00:00<00:00, 216.69it/s]\n", |
|
|
653 |
"100%|██████████| 49/49 [00:00<00:00, 212.14it/s]\n", |
|
|
654 |
"100%|██████████| 89/89 [00:00<00:00, 212.55it/s]\n" |
|
|
655 |
] |
|
|
656 |
}, |
|
|
657 |
{ |
|
|
658 |
"name": "stdout", |
|
|
659 |
"output_type": "stream", |
|
|
660 |
"text": [ |
|
|
661 |
"Epoch 1/1\n", |
|
|
662 |
"30000/30000 [==============================] - 70s - loss: 0.1491 " |
|
|
663 |
] |
|
|
664 |
}, |
|
|
665 |
{ |
|
|
666 |
"name": "stderr", |
|
|
667 |
"output_type": "stream", |
|
|
668 |
"text": [ |
|
|
669 |
" 29%|██▊ | 14/49 [00:00<00:00, 135.21it/s]" |
|
|
670 |
] |
|
|
671 |
}, |
|
|
672 |
{ |
|
|
673 |
"name": "stdout", |
|
|
674 |
"output_type": "stream", |
|
|
675 |
"text": [ |
|
|
676 |
"\n" |
|
|
677 |
] |
|
|
678 |
}, |
|
|
679 |
{ |
|
|
680 |
"name": "stderr", |
|
|
681 |
"output_type": "stream", |
|
|
682 |
"text": [ |
|
|
683 |
"100%|██████████| 49/49 [00:00<00:00, 188.83it/s]\n", |
|
|
684 |
"100%|██████████| 89/89 [00:00<00:00, 169.04it/s]\n", |
|
|
685 |
"100%|██████████| 49/49 [00:00<00:00, 178.81it/s]\n", |
|
|
686 |
"100%|██████████| 89/89 [00:00<00:00, 182.79it/s]\n" |
|
|
687 |
] |
|
|
688 |
} |
|
|
689 |
], |
|
|
690 |
"source": [ |
|
|
691 |
"# BLEND NNS\n", |
|
|
692 |
"for blend_id in range(25, 35):\n", |
|
|
693 |
" with K.tf.device('/gpu:2'):\n", |
|
|
694 |
" model.fit_generator(data_generator(X_train, y_train, batch_size=100), samples_per_epoch=30000, nb_epoch=1, \n", |
|
|
695 |
" callbacks=[earlyStopping], verbose=1)\n", |
|
|
696 |
" \n", |
|
|
697 |
" df = []\n", |
|
|
698 |
" for subj in test:\n", |
|
|
699 |
" for chunk in tqdm(test[subj]):\n", |
|
|
700 |
" data = {}\n", |
|
|
701 |
" data[\"subject_id\"] = int(subj.split(\"_\")[-1])\n", |
|
|
702 |
" data[\"chunk_id\"] = int(chunk.split(\"_\")[-1])\n", |
|
|
703 |
" arr = test[subj][chunk].T\n", |
|
|
704 |
" preds = model.predict([np.array([i]) for i in multiscale(arr)])[0]\n", |
|
|
705 |
" data[\"class_0_score\"] = preds[0]\n", |
|
|
706 |
" data[\"class_1_score\"] = preds[1]\n", |
|
|
707 |
" data[\"class_2_score\"] = preds[2]\n", |
|
|
708 |
" for i in range(0, 1125):\n", |
|
|
709 |
" data[\"tick\"] = i\n", |
|
|
710 |
" df.append(data.copy())\n", |
|
|
711 |
" df = pd.DataFrame(df)\n", |
|
|
712 |
" df = df[[\"subject_id\", \"chunk_id\", \"tick\", \"class_0_score\",\n", |
|
|
713 |
" \"class_1_score\",\"class_2_score\"]]\n", |
|
|
714 |
" \n", |
|
|
715 |
" df.to_csv('submit_blended_' + str(blend_id) + '.csv', index=False)" |
|
|
716 |
] |
|
|
717 |
}, |
|
|
718 |
{ |
|
|
719 |
"cell_type": "code", |
|
|
720 |
"execution_count": 15, |
|
|
721 |
"metadata": { |
|
|
722 |
"collapsed": true |
|
|
723 |
}, |
|
|
724 |
"outputs": [], |
|
|
725 |
"source": [ |
|
|
726 |
"model.save(\"convnet-multiscale-deep-021unk\")" |
|
|
727 |
] |
|
|
728 |
}, |
|
|
729 |
{ |
|
|
730 |
"cell_type": "code", |
|
|
731 |
"execution_count": 19, |
|
|
732 |
"metadata": { |
|
|
733 |
"collapsed": false |
|
|
734 |
}, |
|
|
735 |
"outputs": [ |
|
|
736 |
{ |
|
|
737 |
"name": "stderr", |
|
|
738 |
"output_type": "stream", |
|
|
739 |
"text": [ |
|
|
740 |
"100%|██████████| 49/49 [00:00<00:00, 165.60it/s]\n", |
|
|
741 |
"100%|██████████| 89/89 [00:00<00:00, 185.89it/s]\n", |
|
|
742 |
"100%|██████████| 49/49 [00:00<00:00, 189.62it/s]\n", |
|
|
743 |
"100%|██████████| 89/89 [00:00<00:00, 175.60it/s]\n" |
|
|
744 |
] |
|
|
745 |
} |
|
|
746 |
], |
|
|
747 |
"source": [ |
|
|
748 |
"df = []\n", |
|
|
749 |
"for subj in test:\n", |
|
|
750 |
" for chunk in tqdm(test[subj]):\n", |
|
|
751 |
" data = {}\n", |
|
|
752 |
" data[\"subject_id\"] = int(subj.split(\"_\")[-1])\n", |
|
|
753 |
" data[\"chunk_id\"] = int(chunk.split(\"_\")[-1])\n", |
|
|
754 |
" arr = test[subj][chunk].T\n", |
|
|
755 |
" preds = model.predict([np.array([i]) for i in multiscale(arr)])[0]\n", |
|
|
756 |
" data[\"class_0_score\"] = preds[0]\n", |
|
|
757 |
" data[\"class_1_score\"] = preds[1]\n", |
|
|
758 |
" data[\"class_2_score\"] = preds[2]\n", |
|
|
759 |
" for i in range(0, 1125):\n", |
|
|
760 |
" data[\"tick\"] = i\n", |
|
|
761 |
" df.append(data.copy())\n", |
|
|
762 |
"df = pd.DataFrame(df)\n", |
|
|
763 |
"df = df[[\"subject_id\", \"chunk_id\", \"tick\", \"class_0_score\",\n", |
|
|
764 |
" \"class_1_score\",\"class_2_score\"]]" |
|
|
765 |
] |
|
|
766 |
}, |
|
|
767 |
{ |
|
|
768 |
"cell_type": "code", |
|
|
769 |
"execution_count": 20, |
|
|
770 |
"metadata": { |
|
|
771 |
"collapsed": true |
|
|
772 |
}, |
|
|
773 |
"outputs": [], |
|
|
774 |
"source": [ |
|
|
775 |
"df.to_csv('submit_true_multiscale_016_large_batch.csv', index=False)" |
|
|
776 |
] |
|
|
777 |
}, |
|
|
778 |
{ |
|
|
779 |
"cell_type": "code", |
|
|
780 |
"execution_count": null, |
|
|
781 |
"metadata": { |
|
|
782 |
"collapsed": true |
|
|
783 |
}, |
|
|
784 |
"outputs": [], |
|
|
785 |
"source": [] |
|
|
786 |
} |
|
|
787 |
], |
|
|
788 |
"metadata": { |
|
|
789 |
"kernelspec": { |
|
|
790 |
"display_name": "Python 2", |
|
|
791 |
"language": "python", |
|
|
792 |
"name": "python2" |
|
|
793 |
}, |
|
|
794 |
"language_info": { |
|
|
795 |
"codemirror_mode": { |
|
|
796 |
"name": "ipython", |
|
|
797 |
"version": 2 |
|
|
798 |
}, |
|
|
799 |
"file_extension": ".py", |
|
|
800 |
"mimetype": "text/x-python", |
|
|
801 |
"name": "python", |
|
|
802 |
"nbconvert_exporter": "python", |
|
|
803 |
"pygments_lexer": "ipython2", |
|
|
804 |
"version": "2.7.6" |
|
|
805 |
} |
|
|
806 |
}, |
|
|
807 |
"nbformat": 4, |
|
|
808 |
"nbformat_minor": 1 |
|
|
809 |
} |