|
a |
|
b/ConvNet.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"metadata": { |
|
|
7 |
"collapsed": true |
|
|
8 |
}, |
|
|
9 |
"outputs": [], |
|
|
10 |
"source": [ |
|
|
11 |
"%matplotlib inline\n", |
|
|
12 |
"import pandas as pd\n", |
|
|
13 |
"import numpy as np\n", |
|
|
14 |
"from cdtw import pydtw\n", |
|
|
15 |
"import seaborn as sns\n", |
|
|
16 |
"from tqdm import tqdm\n", |
|
|
17 |
"import os\n", |
|
|
18 |
"import json\n", |
|
|
19 |
"import h5py" |
|
|
20 |
] |
|
|
21 |
}, |
|
|
22 |
{ |
|
|
23 |
"cell_type": "code", |
|
|
24 |
"execution_count": 2, |
|
|
25 |
"metadata": { |
|
|
26 |
"collapsed": false |
|
|
27 |
}, |
|
|
28 |
"outputs": [ |
|
|
29 |
{ |
|
|
30 |
"name": "stderr", |
|
|
31 |
"output_type": "stream", |
|
|
32 |
"text": [ |
|
|
33 |
"Using TensorFlow backend.\n" |
|
|
34 |
] |
|
|
35 |
} |
|
|
36 |
], |
|
|
37 |
"source": [ |
|
|
38 |
"from keras import backend as K\n", |
|
|
39 |
"from keras.regularizers import l2, activity_l2\n", |
|
|
40 |
"\n", |
|
|
41 |
"from keras import backend as K\n", |
|
|
42 |
"from keras.engine.topology import Layer\n", |
|
|
43 |
"from keras.optimizers import RMSprop, SGD, Adam\n", |
|
|
44 |
"from keras.layers.core import Dense, Dropout, Activation, Flatten, Lambda, Merge\n", |
|
|
45 |
"from keras.layers.recurrent import LSTM, GRU\n", |
|
|
46 |
"from keras.models import Sequential, Model, load_model\n", |
|
|
47 |
"from keras.layers import Input, Bidirectional, merge\n", |
|
|
48 |
" from keras.layers.convolutional import Convolution1D\n", |
|
|
49 |
"from keras.layers.pooling import MaxPooling1D, AveragePooling1D, GlobalMaxPooling1D" |
|
|
50 |
] |
|
|
51 |
}, |
|
|
52 |
{ |
|
|
53 |
"cell_type": "code", |
|
|
54 |
"execution_count": null, |
|
|
55 |
"metadata": { |
|
|
56 |
"collapsed": true |
|
|
57 |
}, |
|
|
58 |
"outputs": [], |
|
|
59 |
"source": [ |
|
|
60 |
"def read_train(fname):\n", |
|
|
61 |
" subjects = {}\n", |
|
|
62 |
" with h5py.File(fname, \"r\") as data_file:\n", |
|
|
63 |
" for subject, subject_data in data_file.items():\n", |
|
|
64 |
" print(subject)\n", |
|
|
65 |
" X = subject_data[\"data\"][:]\n", |
|
|
66 |
" y = subject_data[\"labels\"][:]\n", |
|
|
67 |
" subjects[subject] = (X, y)\n", |
|
|
68 |
" return subjects\n", |
|
|
69 |
"\n", |
|
|
70 |
"def read_test(fname):\n", |
|
|
71 |
" subjects = {}\n", |
|
|
72 |
" with h5py.File(fname, \"r\") as data_file:\n", |
|
|
73 |
" X = {}\n", |
|
|
74 |
" for subject, subject_data in data_file.items():\n", |
|
|
75 |
" X[subject] = {}\n", |
|
|
76 |
" for chunk_id, chunk in data_file[subject].items():\n", |
|
|
77 |
" X[subject][chunk_id] = chunk[:]\n", |
|
|
78 |
"\n", |
|
|
79 |
" return X" |
|
|
80 |
] |
|
|
81 |
}, |
|
|
82 |
{ |
|
|
83 |
"cell_type": "code", |
|
|
84 |
"execution_count": null, |
|
|
85 |
"metadata": { |
|
|
86 |
"collapsed": false |
|
|
87 |
}, |
|
|
88 |
"outputs": [], |
|
|
89 |
"source": [ |
|
|
90 |
"train = read_train(\"train.h5\")\n", |
|
|
91 |
"test = read_test(\"test.h5\")" |
|
|
92 |
] |
|
|
93 |
}, |
|
|
94 |
{ |
|
|
95 |
"cell_type": "code", |
|
|
96 |
"execution_count": null, |
|
|
97 |
"metadata": { |
|
|
98 |
"collapsed": true |
|
|
99 |
}, |
|
|
100 |
"outputs": [], |
|
|
101 |
"source": [ |
|
|
102 |
"def batch(ts, y, n=1):\n", |
|
|
103 |
" l = len(ts)\n", |
|
|
104 |
" for ndx in range(0, l-n, 1):\n", |
|
|
105 |
" yield (ts[ndx:min(ndx + n, l)], y[ndx:min(ndx + n, l)])" |
|
|
106 |
] |
|
|
107 |
}, |
|
|
108 |
{ |
|
|
109 |
"cell_type": "code", |
|
|
110 |
"execution_count": null, |
|
|
111 |
"metadata": { |
|
|
112 |
"collapsed": false |
|
|
113 |
}, |
|
|
114 |
"outputs": [], |
|
|
115 |
"source": [ |
|
|
116 |
"def label_batch(batch):\n", |
|
|
117 |
" if all([i == 1 for i in batch[1]]):\n", |
|
|
118 |
" return 1\n", |
|
|
119 |
" elif all([i == 0 for i in batch[1]]):\n", |
|
|
120 |
" return 0\n", |
|
|
121 |
" elif all([i == 2 for i in batch[1]]):\n", |
|
|
122 |
" return 2\n", |
|
|
123 |
" return -1\n", |
|
|
124 |
"\n", |
|
|
125 |
"subject_datas = {}\n", |
|
|
126 |
"for subject, data in tqdm(train.items()):\n", |
|
|
127 |
" subject_ts = data[0].T\n", |
|
|
128 |
" subject_y = data[1][0]\n", |
|
|
129 |
" batches = [i for i in batch(subject_ts, subject_y, n=1125)]\n", |
|
|
130 |
" batches = [(i[0], label_batch(i)) for i in batches]\n", |
|
|
131 |
" batches = [i for i in batches if i[1] != -1]\n", |
|
|
132 |
" batches = [i for i in batches if len(i[0]) == 1125]\n", |
|
|
133 |
" subject_datas[subject] = batches" |
|
|
134 |
] |
|
|
135 |
}, |
|
|
136 |
{ |
|
|
137 |
"cell_type": "code", |
|
|
138 |
"execution_count": null, |
|
|
139 |
"metadata": { |
|
|
140 |
"collapsed": false |
|
|
141 |
}, |
|
|
142 |
"outputs": [], |
|
|
143 |
"source": [ |
|
|
144 |
"subject_datas[\"subject_1\"][0][0].shape" |
|
|
145 |
] |
|
|
146 |
}, |
|
|
147 |
{ |
|
|
148 |
"cell_type": "code", |
|
|
149 |
"execution_count": null, |
|
|
150 |
"metadata": { |
|
|
151 |
"collapsed": false |
|
|
152 |
}, |
|
|
153 |
"outputs": [], |
|
|
154 |
"source": [ |
|
|
155 |
"X = []\n", |
|
|
156 |
"y = []\n", |
|
|
157 |
"for subj, subj_data in tqdm(subject_datas.items()):\n", |
|
|
158 |
" X.extend([i[0] for i in subj_data])\n", |
|
|
159 |
" y.extend([i[1] for i in subj_data])" |
|
|
160 |
] |
|
|
161 |
}, |
|
|
162 |
{ |
|
|
163 |
"cell_type": "code", |
|
|
164 |
"execution_count": null, |
|
|
165 |
"metadata": { |
|
|
166 |
"collapsed": false |
|
|
167 |
}, |
|
|
168 |
"outputs": [], |
|
|
169 |
"source": [ |
|
|
170 |
"X = np.array(X)\n", |
|
|
171 |
"y = np.array(y)" |
|
|
172 |
] |
|
|
173 |
}, |
|
|
174 |
{ |
|
|
175 |
"cell_type": "code", |
|
|
176 |
"execution_count": null, |
|
|
177 |
"metadata": { |
|
|
178 |
"collapsed": true |
|
|
179 |
}, |
|
|
180 |
"outputs": [], |
|
|
181 |
"source": [ |
|
|
182 |
"def shuffle_in_unison_scary(a, b):\n", |
|
|
183 |
" rng_state = np.random.get_state()\n", |
|
|
184 |
" np.random.shuffle(a)\n", |
|
|
185 |
" np.random.set_state(rng_state)\n", |
|
|
186 |
" np.random.shuffle(b)" |
|
|
187 |
] |
|
|
188 |
}, |
|
|
189 |
{ |
|
|
190 |
"cell_type": "code", |
|
|
191 |
"execution_count": null, |
|
|
192 |
"metadata": { |
|
|
193 |
"collapsed": false |
|
|
194 |
}, |
|
|
195 |
"outputs": [], |
|
|
196 |
"source": [ |
|
|
197 |
"shuffle_in_unison_scary(X, y)" |
|
|
198 |
] |
|
|
199 |
}, |
|
|
200 |
{ |
|
|
201 |
"cell_type": "code", |
|
|
202 |
"execution_count": null, |
|
|
203 |
"metadata": { |
|
|
204 |
"collapsed": false |
|
|
205 |
}, |
|
|
206 |
"outputs": [], |
|
|
207 |
"source": [ |
|
|
208 |
"def toarr(label):\n", |
|
|
209 |
" arr = np.zeros(3)\n", |
|
|
210 |
" arr[label] = 1\n", |
|
|
211 |
" return arr\n", |
|
|
212 |
"y_arr = np.vstack([toarr(i) for i in y])" |
|
|
213 |
] |
|
|
214 |
}, |
|
|
215 |
{ |
|
|
216 |
"cell_type": "code", |
|
|
217 |
"execution_count": null, |
|
|
218 |
"metadata": { |
|
|
219 |
"collapsed": false |
|
|
220 |
}, |
|
|
221 |
"outputs": [], |
|
|
222 |
"source": [ |
|
|
223 |
"validation_start = len(X) - 30000\n", |
|
|
224 |
"X_train = X[:validation_start]\n", |
|
|
225 |
"y_train = y_arr[:validation_start]\n", |
|
|
226 |
"X_val = X[validation_start:]\n", |
|
|
227 |
"y_val = y_arr[validation_start:]" |
|
|
228 |
] |
|
|
229 |
}, |
|
|
230 |
{ |
|
|
231 |
"cell_type": "code", |
|
|
232 |
"execution_count": 3, |
|
|
233 |
"metadata": { |
|
|
234 |
"collapsed": true |
|
|
235 |
}, |
|
|
236 |
"outputs": [], |
|
|
237 |
"source": [ |
|
|
238 |
"def get_base_model():\n", |
|
|
239 |
" '''Base network to be shared (eq. to feature extraction).\n", |
|
|
240 |
" '''\n", |
|
|
241 |
" with K.tf.device('/gpu:2'):\n", |
|
|
242 |
" input_seq = Input(shape=(1125, 24))\n", |
|
|
243 |
" \n", |
|
|
244 |
" filter_sizes = [5, 7, 14]\n", |
|
|
245 |
" nb_filters = 100\n", |
|
|
246 |
" filter_size = 7\n", |
|
|
247 |
" different_scales = []\n", |
|
|
248 |
" for fsize in filter_sizes:\n", |
|
|
249 |
" convolved = Convolution1D(nb_filters, fsize, border_mode=\"same\", activation=\"tanh\")(input_seq)\n", |
|
|
250 |
" processed = GlobalMaxPooling1D()(convolved)\n", |
|
|
251 |
" different_scales.append(processed)\n", |
|
|
252 |
" \n", |
|
|
253 |
" different_scales = merge(different_scales, mode='concat')\n", |
|
|
254 |
" compressed = Dense(150, activation=\"tanh\")(different_scales)\n", |
|
|
255 |
" compressed = Dropout(0.2)(compressed)\n", |
|
|
256 |
" compressed = Dense(150, activation=\"tanh\")(compressed)\n", |
|
|
257 |
" model = Model(input=input_seq, output=compressed)\n", |
|
|
258 |
" #return model\n", |
|
|
259 |
" #filter_size = 5\n", |
|
|
260 |
" \n", |
|
|
261 |
" #convolved = Convolution1D(nb_filters, filter_size, border_mode=\"same\", activation=\"tanh\")(input_seq)\n", |
|
|
262 |
" #processed = GlobalMaxPooling1D()(convolved)\n", |
|
|
263 |
" #compressed = Dense(300, activation=\"tanh\")(processed)\n", |
|
|
264 |
" #compressed = Dropout(0.3)(compressed)\n", |
|
|
265 |
" #compressed = Dense(300, activation=\"linear\")(compressed)\n", |
|
|
266 |
" #model = Model(input=input_seq, output=compressed) \n", |
|
|
267 |
" return model" |
|
|
268 |
] |
|
|
269 |
}, |
|
|
270 |
{ |
|
|
271 |
"cell_type": "code", |
|
|
272 |
"execution_count": 4, |
|
|
273 |
"metadata": { |
|
|
274 |
"collapsed": false |
|
|
275 |
}, |
|
|
276 |
"outputs": [], |
|
|
277 |
"source": [ |
|
|
278 |
"with K.tf.device('/gpu:2'):\n", |
|
|
279 |
" base_network = get_base_model()\n", |
|
|
280 |
" input_seq = Input(shape=(1125, 24))\n", |
|
|
281 |
"\n", |
|
|
282 |
" embedding = base_network(input_seq)\n", |
|
|
283 |
" out = Dense(3, activation='softmax')(embedding)\n", |
|
|
284 |
" \n", |
|
|
285 |
" model = Model(input=input_seq, output=out)\n", |
|
|
286 |
" \n", |
|
|
287 |
" #opt = SGD(lr=0.001, momentum=0.9, nesterov=True, clipvalue=0.0001)\n", |
|
|
288 |
" #opt = RMSprop(lr=0.001, clipvalue=10**6)\n", |
|
|
289 |
" opt = Adam(lr=0.01)\n", |
|
|
290 |
" model.compile(loss=\"categorical_crossentropy\", optimizer=opt)" |
|
|
291 |
] |
|
|
292 |
}, |
|
|
293 |
{ |
|
|
294 |
"cell_type": "code", |
|
|
295 |
"execution_count": 13, |
|
|
296 |
"metadata": { |
|
|
297 |
"collapsed": false |
|
|
298 |
}, |
|
|
299 |
"outputs": [ |
|
|
300 |
{ |
|
|
301 |
"data": { |
|
|
302 |
"text/plain": [ |
|
|
303 |
"<tf.Tensor 'Tanh_3:0' shape=(?, 150) dtype=float32>" |
|
|
304 |
] |
|
|
305 |
}, |
|
|
306 |
"execution_count": 13, |
|
|
307 |
"metadata": {}, |
|
|
308 |
"output_type": "execute_result" |
|
|
309 |
} |
|
|
310 |
], |
|
|
311 |
"source": [ |
|
|
312 |
"model.layers[-2].layers[-3].get_output_at(0)" |
|
|
313 |
] |
|
|
314 |
}, |
|
|
315 |
{ |
|
|
316 |
"cell_type": "code", |
|
|
317 |
"execution_count": 9, |
|
|
318 |
"metadata": { |
|
|
319 |
"collapsed": false |
|
|
320 |
}, |
|
|
321 |
"outputs": [ |
|
|
322 |
{ |
|
|
323 |
"data": { |
|
|
324 |
"text/plain": [ |
|
|
325 |
"[<tf.Tensor 'Tanh_4:0' shape=(?, 150) dtype=float32>]" |
|
|
326 |
] |
|
|
327 |
}, |
|
|
328 |
"execution_count": 9, |
|
|
329 |
"metadata": {}, |
|
|
330 |
"output_type": "execute_result" |
|
|
331 |
} |
|
|
332 |
], |
|
|
333 |
"source": [ |
|
|
334 |
"model.layers[-2].outputs = [model.layers[-2].layers[-3].get_output_at(0)]" |
|
|
335 |
] |
|
|
336 |
}, |
|
|
337 |
{ |
|
|
338 |
"cell_type": "code", |
|
|
339 |
"execution_count": 10, |
|
|
340 |
"metadata": { |
|
|
341 |
"collapsed": false |
|
|
342 |
}, |
|
|
343 |
"outputs": [ |
|
|
344 |
{ |
|
|
345 |
"ename": "NameError", |
|
|
346 |
"evalue": "name 'X_train' is not defined", |
|
|
347 |
"output_type": "error", |
|
|
348 |
"traceback": [ |
|
|
349 |
"\u001b[0;31m\u001b[0m", |
|
|
350 |
"\u001b[0;31mNameError\u001b[0mTraceback (most recent call last)", |
|
|
351 |
"\u001b[0;32m<ipython-input-10-e101f3d38d74>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mK\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'/gpu:2'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m model.fit(X_train, y_train, batch_size=60, callbacks=[earlyStopping],\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0mnb_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalidation_split\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshuffle\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m class_weight=None, sample_weight=None)\n", |
|
|
352 |
"\u001b[0;31mNameError\u001b[0m: name 'X_train' is not defined" |
|
|
353 |
] |
|
|
354 |
} |
|
|
355 |
], |
|
|
356 |
"source": [ |
|
|
357 |
"from keras.callbacks import EarlyStopping\n", |
|
|
358 |
"nb_epoch = 100000\n", |
|
|
359 |
"earlyStopping = EarlyStopping(monitor='val_loss', patience=3, verbose=0, mode='auto')\n", |
|
|
360 |
"#samples_per_epoch = 50000\n", |
|
|
361 |
"\n", |
|
|
362 |
"with K.tf.device('/gpu:2'):\n", |
|
|
363 |
" model.fit(X_train, y_train, batch_size=60, callbacks=[earlyStopping],\n", |
|
|
364 |
" nb_epoch=100, verbose=1, validation_split=0.2, shuffle=True,\n", |
|
|
365 |
" class_weight=None, sample_weight=None)" |
|
|
366 |
] |
|
|
367 |
}, |
|
|
368 |
{ |
|
|
369 |
"cell_type": "code", |
|
|
370 |
"execution_count": null, |
|
|
371 |
"metadata": { |
|
|
372 |
"collapsed": false |
|
|
373 |
}, |
|
|
374 |
"outputs": [], |
|
|
375 |
"source": [ |
|
|
376 |
"model.layers[-2].layers[-8]" |
|
|
377 |
] |
|
|
378 |
}, |
|
|
379 |
{ |
|
|
380 |
"cell_type": "code", |
|
|
381 |
"execution_count": null, |
|
|
382 |
"metadata": { |
|
|
383 |
"collapsed": false |
|
|
384 |
}, |
|
|
385 |
"outputs": [], |
|
|
386 |
"source": [ |
|
|
387 |
"model.save(\"convnet-multiscale\")" |
|
|
388 |
] |
|
|
389 |
}, |
|
|
390 |
{ |
|
|
391 |
"cell_type": "code", |
|
|
392 |
"execution_count": null, |
|
|
393 |
"metadata": { |
|
|
394 |
"collapsed": false |
|
|
395 |
}, |
|
|
396 |
"outputs": [], |
|
|
397 |
"source": [ |
|
|
398 |
"preds = [np.argmax(i) for i in model.predict(X_val)]" |
|
|
399 |
] |
|
|
400 |
}, |
|
|
401 |
{ |
|
|
402 |
"cell_type": "code", |
|
|
403 |
"execution_count": null, |
|
|
404 |
"metadata": { |
|
|
405 |
"collapsed": false |
|
|
406 |
}, |
|
|
407 |
"outputs": [], |
|
|
408 |
"source": [ |
|
|
409 |
"from sklearn.metrics import accuracy_score\n", |
|
|
410 |
"accuracy_score([np.argmax(i) for i in y_val], preds)" |
|
|
411 |
] |
|
|
412 |
}, |
|
|
413 |
{ |
|
|
414 |
"cell_type": "code", |
|
|
415 |
"execution_count": null, |
|
|
416 |
"metadata": { |
|
|
417 |
"collapsed": false |
|
|
418 |
}, |
|
|
419 |
"outputs": [], |
|
|
420 |
"source": [ |
|
|
421 |
"# GENERATES SUBMISSION DF\n", |
|
|
422 |
"df = []\n", |
|
|
423 |
"for subj in test:\n", |
|
|
424 |
" for chunk in tqdm(test[subj]):\n", |
|
|
425 |
" data = {}\n", |
|
|
426 |
" data[\"subject_id\"] = int(subj.split(\"_\")[-1])\n", |
|
|
427 |
" data[\"chunk_id\"] = int(chunk.split(\"_\")[-1])\n", |
|
|
428 |
" arr = test[subj][chunk].T\n", |
|
|
429 |
" preds = model.predict(np.array([arr]))[0]\n", |
|
|
430 |
" data[\"class_0_score\"] = preds[0]\n", |
|
|
431 |
" data[\"class_1_score\"] = preds[1]\n", |
|
|
432 |
" data[\"class_2_score\"] = preds[2]\n", |
|
|
433 |
" for i in range(0, 1125):\n", |
|
|
434 |
" data[\"tick\"] = i\n", |
|
|
435 |
" df.append(data.copy())\n", |
|
|
436 |
"df = pd.DataFrame(df)\n", |
|
|
437 |
"df = df[[\"subject_id\", \"chunk_id\", \"tick\", \"class_0_score\",\n", |
|
|
438 |
" \"class_1_score\",\"class_2_score\"]]" |
|
|
439 |
] |
|
|
440 |
}, |
|
|
441 |
{ |
|
|
442 |
"cell_type": "code", |
|
|
443 |
"execution_count": null, |
|
|
444 |
"metadata": { |
|
|
445 |
"collapsed": false |
|
|
446 |
}, |
|
|
447 |
"outputs": [], |
|
|
448 |
"source": [ |
|
|
449 |
"df.head()" |
|
|
450 |
] |
|
|
451 |
}, |
|
|
452 |
{ |
|
|
453 |
"cell_type": "code", |
|
|
454 |
"execution_count": null, |
|
|
455 |
"metadata": { |
|
|
456 |
"collapsed": true |
|
|
457 |
}, |
|
|
458 |
"outputs": [], |
|
|
459 |
"source": [ |
|
|
460 |
"df.to_csv('submit_multiscale_untrained.csv', index=False)" |
|
|
461 |
] |
|
|
462 |
}, |
|
|
463 |
{ |
|
|
464 |
"cell_type": "code", |
|
|
465 |
"execution_count": null, |
|
|
466 |
"metadata": { |
|
|
467 |
"collapsed": true |
|
|
468 |
}, |
|
|
469 |
"outputs": [], |
|
|
470 |
"source": [] |
|
|
471 |
} |
|
|
472 |
], |
|
|
473 |
"metadata": { |
|
|
474 |
"kernelspec": { |
|
|
475 |
"display_name": "Python 2", |
|
|
476 |
"language": "python", |
|
|
477 |
"name": "python2" |
|
|
478 |
}, |
|
|
479 |
"language_info": { |
|
|
480 |
"codemirror_mode": { |
|
|
481 |
"name": "ipython", |
|
|
482 |
"version": 2 |
|
|
483 |
}, |
|
|
484 |
"file_extension": ".py", |
|
|
485 |
"mimetype": "text/x-python", |
|
|
486 |
"name": "python", |
|
|
487 |
"nbconvert_exporter": "python", |
|
|
488 |
"pygments_lexer": "ipython2", |
|
|
489 |
"version": "2.7.6" |
|
|
490 |
} |
|
|
491 |
}, |
|
|
492 |
"nbformat": 4, |
|
|
493 |
"nbformat_minor": 1 |
|
|
494 |
} |