Switch to unified view

a b/Ensemble Learning/Boosting/app1.m
1
close all; clear;clc;
2
3
load dataDWT.mat;
4
%load dataAR.mat;
5
%load dataCSP.mat;
6
%load dataPSD.mat;
7
Y(Y==2) = -1;
8
9
y=Y;
10
11
num_iterations=30;
12
base_algorithm= 'regression_tree';
13
min_parent = floor(size(X, 1) / 5) * 4 - 1;
14
loss='logistic';
15
learning_rate=1;
16
17
no_objects = length(y);
18
fifth = floor(no_objects / 5);
19
error_train = zeros([num_iterations 1]);
20
error_test = zeros([num_iterations 1]);
21
22
for fold = 1 : 5
23
    mask_test = zeros([1 no_objects]);
24
    mask_test((fold - 1) * fifth + 1 : fifth * fold) = 1;
25
    mask_test = logical(mask_test);
26
    train_set = X(~mask_test,:);
27
    train_ans = y(~mask_test);
28
    test_set = X(mask_test,:);
29
    test_ans = y(mask_test);
30
    model = gradient_boosting_train(train_set, train_ans, num_iterations, ...
31
        base_algorithm, loss, 'learning_rate', learning_rate, ...
32
        'min_parent', min_parent);
33
    [~, error_train_loop] = gradient_boosting_predict(model, train_set, train_ans);
34
    [~, error_test_loop] = gradient_boosting_predict(model, test_set, test_ans);
35
    error_train = error_train + error_train_loop;
36
    error_test = error_test + error_test_loop;
37
end
38
error_train = error_train / 5;
39
error_test = error_test / 5;
40
41
hold on;
42
xlabel('Number of iterations');
43
ylabel('Error');
44
title('Gradient boosting - PSD');
45
plot(1 : num_iterations, error_train, 'linewidth', 2);
46
47