% Practicum, Task #3, 'Compositions of algorithms'.
%
% FUNCTION:
% [prediction, err] = bagging_predict (model, X, y)
%
% DESCRIPTION:
% This function use the composition of algorithms, trained with bagging
% method, for prediction.
%
% INPUT:
% X --- matrix of objects, N x K double matrix, N --- number of objects,
% K --- number of features.
% y --- vector of answers, N x 1 double vector, N --- number of objects. y
% can have only two values --- +1 and -1.
% model --- trained composition.
%
% OUTPUT:
% prediction --- vector of predicted answers, N x 1 double vector.
% error --- the ratio of number of correct answers to number of objects on
% each iteration, num_iterations x 1 vector
%
% AUTHOR:
% Murat Apishev (great-mel@yandex.ru)
%
function [prediction, err] = bagging_predict (model, X, y)
num_iterations = length(model.models);
no_objects = length(y);
pred_prediction = zeros([no_objects num_iterations]);
err = zeros([num_iterations 1]);
if strcmp(model.algorithm, 'svm')
for alg = 1 : num_iterations
pred_prediction(:,alg) = svmpredict(y, X, model.models{alg});
func = @(i) find_max(pred_prediction(i,:));
prediction = arrayfun(func, 1 : no_objects)';
err(alg) = sum(prediction ~= y) / no_objects;
end
elseif strcmp(model.algorithm, 'classification_tree')
for alg = 1 : num_iterations
pred_prediction(:,alg) = predict(model.models{alg}, X);
func = @(i) find_max(pred_prediction(i,:));
prediction = arrayfun(func, 1 : no_objects)';
err(alg) = sum(prediction ~= y) / no_objects;
end
else
error('Incorrect type of algorithm!');
end
end
function [result] = find_max (vector)
if sum(vector == -1) > sum(vector == +1)
result = -1;
else
result = +1;
end
end