[50790b]: / lstm_kmean / inference.py

Download this file

161 lines (137 with data), 5.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import tensorflow as tf
import numpy as np
from glob import glob
from natsort import natsorted
import os
from model import TripleNet, train_step, test_step
from utils import load_complete_data
from tqdm import tqdm
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from matplotlib import style
import seaborn as sns
import pandas as pd
import pickle
from sklearn.cluster import KMeans
from scipy.optimize import linear_sum_assignment as linear_assignment
style.use('seaborn')
os.environ["CUDA_DEVICE_ORDER"]= "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]= '0'
# Thanks to: https://github.com/k-han/DTC/blob/master/utils/util.py
def cluster_acc(y_true, y_pred):
"""
Calculate clustering accuracy. Require scikit-learn installed
# Arguments
y: true labels, numpy.array with shape `(n_samples,)`
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
# Return
accuracy, in [0,1]
"""
y_true = y_true.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
ind = linear_assignment(w.max() - w)
return sum([w[i, j] for i, j in zip(*ind)]) * 1.0 / y_pred.size
if __name__ == '__main__':
n_channels = 14
n_feat = 128
batch_size = 256
test_batch_size = 256
n_classes = 10
# data_cls = natsorted(glob('data/thoughtviz_eeg_data/*'))
# cls2idx = {key.split(os.path.sep)[-1]:idx for idx, key in enumerate(data_cls, start=0)}
# idx2cls = {value:key for key, value in cls2idx.items()}
with open('../../data/b2i_data/eeg/image/data.pkl', 'rb') as file:
data = pickle.load(file, encoding='latin1')
train_X = data['x_train']
train_Y = data['y_train']
test_X = data['x_test']
test_Y = data['y_test']
# train_batch = load_complete_data('data/thoughtviz_eeg_data/*/train/*', batch_size=batch_size)
# val_batch = load_complete_data('data/thoughtviz_eeg_data/*/val/*', batch_size=batch_size)
# test_batch = load_complete_data('data/thoughtviz_eeg_data/*/test/*', batch_size=test_batch_size)
train_batch = load_complete_data(train_X, train_Y, batch_size=batch_size)
val_batch = load_complete_data(test_X, test_Y, batch_size=batch_size)
test_batch = load_complete_data(test_X, test_Y, batch_size=test_batch_size)
# X, Y = next(iter(train_batch))
# print(X.shape, Y.shape)
triplenet = TripleNet(n_classes=n_classes)
opt = tf.keras.optimizers.Adam(learning_rate=3e-4)
triplenet_ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=triplenet, optimizer=opt)
triplenet_ckpt.restore('experiments/best_ckpt/ckpt-89')
tq = tqdm(test_batch)
feat_X = np.array([])
feat_Y = np.array([])
for idx, (X, Y) in enumerate(tq, start=1):
_, feat = triplenet(X, training=False)
feat_X = np.concatenate((feat_X, feat.numpy()), axis=0) if feat_X.size else feat.numpy()
feat_Y = np.concatenate((feat_Y, Y.numpy()), axis=0) if feat_Y.size else Y.numpy()
print(feat_X.shape, feat_Y.shape)
# colors = list(plt.cm.get_cmap('viridis', 10))
# print(colors)
# colors = [np.random.rand(3,) for _ in range(10)]
# print(colors)
# Y_color = [colors[label] for label in feat_Y]
kmeans = KMeans(n_clusters=n_classes,random_state=45)
kmeans.fit(feat_X)
labels = kmeans.labels_
kmeanacc = cluster_acc(feat_Y, labels)
# correct_labels = sum(feat_Y == labels)
# print("Result: %d out of %d samples were correctly labeled." % (correct_labels, feat_Y.shape[0]))
# kmeanacc = correct_labels/float(feat_Y.shape[0])
print('Accuracy score: {0:0.2f}'. format(kmeanacc))
tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=700)
tsne_results = tsne.fit_transform(feat_X)
df = pd.DataFrame()
df['label'] = feat_Y
df['x1'] = tsne_results[:, 0]
df['x2'] = tsne_results[:, 1]
# df['x3'] = tsne_results[:, 2]
df.to_csv('experiments/infer_triplet_embed2D.csv')
# df.to_csv('experiments/triplenet_embed3D.csv')
# df = pd.read_csv('experiments/triplenet_embed2D.csv')
df = pd.read_csv('experiments/infer_triplet_embed2D.csv')
plt.figure(figsize=(16,10))
# ax = plt.axes(projection='3d')
sns.scatterplot(
x="x1", y="x2",
data=df,
hue='label',
palette=sns.color_palette("hls", n_classes),
legend="full",
alpha=0.4
)
# ax.scatter3D(df['x1'], df['x2'], df['x3'], c=df['x3'], alpha=0.4)
# plt.scatter(df['x1'], df['x2'], c=df['x2'], alpha=0.4)
# min_x, max_x = np.min(feat_X), np.max(feat_X)
# min_x, max_x = -10, 10
# for c in range(len(np.unique(feat_Y))):
# # ax.scatter(feat_X[feat_Y==c, 0], feat_X[feat_Y==c, 1], feat_X[feat_Y==c, 2], '.', alpha=0.5, c=colors[c], s=0.3)
# plt.scatter(feat_X[feat_Y==c, 0], feat_X[feat_Y==c, 1], marker='.', alpha=0.5, c=colors[c], s=1.0)
# plt.title('Triple Loss')
# W = triplenet.cls_layer.get_weights()[0].T
# x = np.linspace(min_x, max_x, 50)
# y = W[0][1]*x + W[0][0]
# plt.plot(x, y, c=colors[0])
# x = np.linspace(min_x, max_x, 50)
# y = W[1][1]*x + W[1][0]
# plt.plot(x, y, c=colors[1])
# x = np.linspace(min_x, max_x, 50)
# y = W[2][1]*x + W[2][0]
# plt.plot(x, y, c=colors[2])
# x = np.linspace(min_x, max_x, 50)
# y = W[3][1]*x + W[3][0]
# plt.plot(x, y, c=colors[3])
# x = np.linspace(min_x, max_x, 50)
# y = W[4][1]*x + W[4][0]
# plt.plot(x, y, c=colors[4])
# plt.clf()
# plt.close()
# featX = df[['x1', 'x2']].to_numpy()
# print(featX.shape)
plt.title('k-means accuracy: {}%'.format(kmeanacc*100))
plt.savefig('experiments/embedding.png')
# plt.show()