|
a |
|
b/losses.py |
|
|
1 |
import tensorflow as tf |
|
|
2 |
import numpy as np |
|
|
3 |
from tensorflow.keras import losses |
|
|
4 |
|
|
|
5 |
# Add perceptual loss |
|
|
6 |
|
|
|
7 |
def disc_hinge(dis_real, dis_fake): |
|
|
8 |
real_loss = -1.0 * tf.reduce_mean( tf.minimum(0.0, -1.0 + dis_real) ) |
|
|
9 |
fake_loss = -1.0 * tf.reduce_mean( tf.minimum(0.0, -1.0 - dis_fake) ) |
|
|
10 |
return (real_loss + fake_loss)/2.0 |
|
|
11 |
|
|
|
12 |
def gen_hinge(dis_fake): |
|
|
13 |
fake_loss = -1.0 * tf.reduce_mean( dis_fake ) |
|
|
14 |
return fake_loss |
|
|
15 |
|
|
|
16 |
def disc_loss(dis_real, dis_fake, dis_wrong=None): |
|
|
17 |
# real = tf.ones_like(dis_real) |
|
|
18 |
# fake = tf.zeros_like(dis_fake) |
|
|
19 |
real = tf.convert_to_tensor(np.random.randint(low=7, high=12, size=dis_real.shape)/10.0) |
|
|
20 |
fake = tf.convert_to_tensor(np.random.randint(low=0, high=3, size=dis_real.shape)/10.0) |
|
|
21 |
real_loss = losses.BinaryCrossentropy(reduction=tf.keras.losses.Reduction.NONE)(real, dis_real) |
|
|
22 |
fake_loss = losses.BinaryCrossentropy(reduction=tf.keras.losses.Reduction.NONE)(fake, dis_fake) |
|
|
23 |
#wrong_loss = losses.BinaryCrossentropy()(fake, dis_wrong) |
|
|
24 |
#total_loss = (real_loss + fake_loss + wrong_loss)/3.0 |
|
|
25 |
# total_loss = tf.reduce_mean(real_loss**2 + fake_loss**2) |
|
|
26 |
total_loss = (real_loss + fake_loss)/2.0 |
|
|
27 |
return total_loss |
|
|
28 |
|
|
|
29 |
def gen_loss(dis_fake): |
|
|
30 |
real = tf.ones_like(dis_fake) |
|
|
31 |
fake_loss = losses.BinaryCrossentropy(reduction=tf.keras.losses.Reduction.NONE)(real, dis_fake) |
|
|
32 |
return fake_loss |
|
|
33 |
|
|
|
34 |
def critic_loss(D_real, D_fake): |
|
|
35 |
# real = -tf.ones_like(D_real) |
|
|
36 |
# fake = tf.ones_like(D_fake) |
|
|
37 |
# return tf.reduce_mean(D_real*real) + tf.reduce_mean(D_fake*fake) |
|
|
38 |
return (tf.reduce_mean(D_fake) - tf.reduce_mean(D_real)) |
|
|
39 |
|
|
|
40 |
# def gen_loss(D_fake, real_img, fake_img): |
|
|
41 |
# # fake = tf.ones_like(D_fake) |
|
|
42 |
# # return tf.reduce_mean(D_fake*fake) |
|
|
43 |
# # real_img = tf.clip_by_value(255.0*(real_img*0.5+0.5), 0.0, 255.0) |
|
|
44 |
# # fake_img = tf.clip_by_value(255.0*(fake_img*0.5+0.5), 0.0, 255.0) |
|
|
45 |
# return -tf.reduce_mean(D_fake) #+ 0.6 * tf.keras.losses.MeanSquaredError()(real_img, fake_img) |
|
|
46 |
|
|
|
47 |
def wgan_gp_loss(D_real, D_fake, Y, Y_cap, model, batch_size): |
|
|
48 |
dloss = (tf.reduce_mean(D_fake) - tf.reduce_mean(D_real)) |
|
|
49 |
lam = 10 |
|
|
50 |
eps = tf.random.uniform(shape=[batch_size, 1, 1, 1], minval=0, maxval=1) |
|
|
51 |
x_cap = eps * Y + (1-eps) * Y_cap |
|
|
52 |
with tf.GradientTape() as gptape: |
|
|
53 |
gptape.watch(x_cap) |
|
|
54 |
out = model.critic(x_cap, training=True) |
|
|
55 |
grad = gptape.gradient(out, [x_cap])[0] |
|
|
56 |
# Fetching only x-gradient |
|
|
57 |
# grad_norm = tf.norm(grad, ord='euclidean', axis=1) |
|
|
58 |
# grad_pen = tf.reduce_mean(tf.square(grad_norm - 1)) |
|
|
59 |
grad_norm = tf.sqrt(tf.reduce_sum(tf.square(grad), axis=[1, 2, 3])) |
|
|
60 |
grad_pen = tf.reduce_mean((grad_norm - 1.0) ** 2) |
|
|
61 |
dloss = dloss + lam * grad_pen |
|
|
62 |
return dloss |