|
a |
|
b/diff_augment.py |
|
|
1 |
# Differentiable Augmentation for Data-Efficient GAN Training |
|
|
2 |
# Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han |
|
|
3 |
# https://arxiv.org/pdf/2006.10738 |
|
|
4 |
# https://github.com/mit-han-lab/data-efficient-gans/blob/master/DiffAugment_tf.py |
|
|
5 |
|
|
|
6 |
import tensorflow as tf |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
def diff_augment(x, policy: str = None, channels_first=False): |
|
|
10 |
if policy: |
|
|
11 |
if channels_first: |
|
|
12 |
x = tf.transpose(x, [0, 2, 3, 1]) |
|
|
13 |
for p in policy.split(','): |
|
|
14 |
for f in AUGMENT_FNS[p]: |
|
|
15 |
x = f(x) |
|
|
16 |
if channels_first: |
|
|
17 |
x = tf.transpose(x, [0, 3, 1, 2]) |
|
|
18 |
return x |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
def rand_brightness(x): |
|
|
22 |
magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) - 0.5 |
|
|
23 |
x = x + magnitude |
|
|
24 |
return x |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
def rand_saturation(x): |
|
|
28 |
magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) * 2 |
|
|
29 |
x_mean = tf.reduce_mean(x, axis=3, keepdims=True) |
|
|
30 |
x = (x - x_mean) * magnitude + x_mean |
|
|
31 |
return x |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
def rand_contrast(x): |
|
|
35 |
magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) + 0.5 |
|
|
36 |
x_mean = tf.reduce_mean(x, axis=[1, 2, 3], keepdims=True) |
|
|
37 |
x = (x - x_mean) * magnitude + x_mean |
|
|
38 |
return x |
|
|
39 |
|
|
|
40 |
|
|
|
41 |
def rand_translation(x, ratio=0.125): |
|
|
42 |
batch_size = tf.shape(x)[0] |
|
|
43 |
image_size = tf.shape(x)[1:3] |
|
|
44 |
shift = tf.cast(tf.cast(image_size, tf.float32) * ratio + 0.5, tf.int32) |
|
|
45 |
translation_x = tf.random.uniform([batch_size, 1], -shift[0], shift[0] + 1, dtype=tf.int32) |
|
|
46 |
translation_y = tf.random.uniform([batch_size, 1], -shift[1], shift[1] + 1, dtype=tf.int32) |
|
|
47 |
grid_x = tf.clip_by_value(tf.expand_dims(tf.range(image_size[0], dtype=tf.int32), 0) + translation_x + 1, 0, |
|
|
48 |
image_size[0] + 1) |
|
|
49 |
grid_y = tf.clip_by_value(tf.expand_dims(tf.range(image_size[1], dtype=tf.int32), 0) + translation_y + 1, 0, |
|
|
50 |
image_size[1] + 1) |
|
|
51 |
x = tf.gather_nd(tf.pad(x, [[0, 0], [1, 1], [0, 0], [0, 0]]), tf.expand_dims(grid_x, -1), batch_dims=1) |
|
|
52 |
x = tf.transpose(tf.gather_nd(tf.pad(tf.transpose(x, [0, 2, 1, 3]), [[0, 0], [1, 1], [0, 0], [0, 0]]), |
|
|
53 |
tf.expand_dims(grid_y, -1), batch_dims=1), [0, 2, 1, 3]) |
|
|
54 |
return x |
|
|
55 |
|
|
|
56 |
|
|
|
57 |
def rand_cutout(x, ratio=0.5): |
|
|
58 |
batch_size = tf.shape(x)[0] |
|
|
59 |
image_size = tf.shape(x)[1:3] |
|
|
60 |
cutout_size = tf.cast(tf.cast(image_size, tf.float32) * ratio + 0.5, tf.int32) |
|
|
61 |
offset_x = tf.random.uniform([tf.shape(x)[0], 1, 1], maxval=image_size[0] + (1 - cutout_size[0] % 2), |
|
|
62 |
dtype=tf.int32) |
|
|
63 |
offset_y = tf.random.uniform([tf.shape(x)[0], 1, 1], maxval=image_size[1] + (1 - cutout_size[1] % 2), |
|
|
64 |
dtype=tf.int32) |
|
|
65 |
grid_batch, grid_x, grid_y = tf.meshgrid(tf.range(batch_size, dtype=tf.int32), |
|
|
66 |
tf.range(cutout_size[0], dtype=tf.int32), |
|
|
67 |
tf.range(cutout_size[1], dtype=tf.int32), indexing='ij') |
|
|
68 |
cutout_grid = tf.stack( |
|
|
69 |
[grid_batch, grid_x + offset_x - cutout_size[0] // 2, grid_y + offset_y - cutout_size[1] // 2], axis=-1) |
|
|
70 |
mask_shape = tf.stack([batch_size, image_size[0], image_size[1]]) |
|
|
71 |
cutout_grid = tf.maximum(cutout_grid, 0) |
|
|
72 |
cutout_grid = tf.minimum(cutout_grid, tf.reshape(mask_shape - 1, [1, 1, 1, 3])) |
|
|
73 |
mask = tf.maximum( |
|
|
74 |
1 - tf.scatter_nd(cutout_grid, tf.ones([batch_size, cutout_size[0], cutout_size[1]], dtype=tf.float32), |
|
|
75 |
mask_shape), 0) |
|
|
76 |
x = x * tf.expand_dims(mask, axis=3) |
|
|
77 |
return x |
|
|
78 |
|
|
|
79 |
|
|
|
80 |
AUGMENT_FNS = { |
|
|
81 |
'color': [rand_brightness, rand_saturation, rand_contrast], |
|
|
82 |
'translation': [rand_translation], |
|
|
83 |
'cutout': [rand_cutout], |
|
|
84 |
} |