--- a +++ b/diff_augment.py @@ -0,0 +1,84 @@ +# Differentiable Augmentation for Data-Efficient GAN Training +# Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han +# https://arxiv.org/pdf/2006.10738 +# https://github.com/mit-han-lab/data-efficient-gans/blob/master/DiffAugment_tf.py + +import tensorflow as tf + + +def diff_augment(x, policy: str = None, channels_first=False): + if policy: + if channels_first: + x = tf.transpose(x, [0, 2, 3, 1]) + for p in policy.split(','): + for f in AUGMENT_FNS[p]: + x = f(x) + if channels_first: + x = tf.transpose(x, [0, 3, 1, 2]) + return x + + +def rand_brightness(x): + magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) - 0.5 + x = x + magnitude + return x + + +def rand_saturation(x): + magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) * 2 + x_mean = tf.reduce_mean(x, axis=3, keepdims=True) + x = (x - x_mean) * magnitude + x_mean + return x + + +def rand_contrast(x): + magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) + 0.5 + x_mean = tf.reduce_mean(x, axis=[1, 2, 3], keepdims=True) + x = (x - x_mean) * magnitude + x_mean + return x + + +def rand_translation(x, ratio=0.125): + batch_size = tf.shape(x)[0] + image_size = tf.shape(x)[1:3] + shift = tf.cast(tf.cast(image_size, tf.float32) * ratio + 0.5, tf.int32) + translation_x = tf.random.uniform([batch_size, 1], -shift[0], shift[0] + 1, dtype=tf.int32) + translation_y = tf.random.uniform([batch_size, 1], -shift[1], shift[1] + 1, dtype=tf.int32) + grid_x = tf.clip_by_value(tf.expand_dims(tf.range(image_size[0], dtype=tf.int32), 0) + translation_x + 1, 0, + image_size[0] + 1) + grid_y = tf.clip_by_value(tf.expand_dims(tf.range(image_size[1], dtype=tf.int32), 0) + translation_y + 1, 0, + image_size[1] + 1) + x = tf.gather_nd(tf.pad(x, [[0, 0], [1, 1], [0, 0], [0, 0]]), tf.expand_dims(grid_x, -1), batch_dims=1) + x = tf.transpose(tf.gather_nd(tf.pad(tf.transpose(x, [0, 2, 1, 3]), [[0, 0], [1, 1], [0, 0], [0, 0]]), + tf.expand_dims(grid_y, -1), batch_dims=1), [0, 2, 1, 3]) + return x + + +def rand_cutout(x, ratio=0.5): + batch_size = tf.shape(x)[0] + image_size = tf.shape(x)[1:3] + cutout_size = tf.cast(tf.cast(image_size, tf.float32) * ratio + 0.5, tf.int32) + offset_x = tf.random.uniform([tf.shape(x)[0], 1, 1], maxval=image_size[0] + (1 - cutout_size[0] % 2), + dtype=tf.int32) + offset_y = tf.random.uniform([tf.shape(x)[0], 1, 1], maxval=image_size[1] + (1 - cutout_size[1] % 2), + dtype=tf.int32) + grid_batch, grid_x, grid_y = tf.meshgrid(tf.range(batch_size, dtype=tf.int32), + tf.range(cutout_size[0], dtype=tf.int32), + tf.range(cutout_size[1], dtype=tf.int32), indexing='ij') + cutout_grid = tf.stack( + [grid_batch, grid_x + offset_x - cutout_size[0] // 2, grid_y + offset_y - cutout_size[1] // 2], axis=-1) + mask_shape = tf.stack([batch_size, image_size[0], image_size[1]]) + cutout_grid = tf.maximum(cutout_grid, 0) + cutout_grid = tf.minimum(cutout_grid, tf.reshape(mask_shape - 1, [1, 1, 1, 3])) + mask = tf.maximum( + 1 - tf.scatter_nd(cutout_grid, tf.ones([batch_size, cutout_size[0], cutout_size[1]], dtype=tf.float32), + mask_shape), 0) + x = x * tf.expand_dims(mask, axis=3) + return x + + +AUGMENT_FNS = { + 'color': [rand_brightness, rand_saturation, rand_contrast], + 'translation': [rand_translation], + 'cutout': [rand_cutout], +} \ No newline at end of file