import torch
import torch.nn as nn
from timm.models.layers import PatchEmbed, Mlp, DropPath
from timm.models.registry import register_model
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads=8, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class EEGTransformer(nn.Module):
def __init__(self):
super().__init__()
self.dim = 4000
self.decoder_depth = 1
self.blocks = nn.Sequential(*[
Block(
dim= self.dim,
drop= 0.2,
attn_drop= 0.2,
)
for i in range(self.decoder_depth)])
self.relu = nn.ReLU()
# self.softmax = nn.Softmax()
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.dim)) # 1, 1, 8000
# self.fc1 = nn.Linear(60, 512)
self.fc1 = nn.Linear(self.dim, 512)
self.fc2 = nn.Linear(512, 3)
torch.nn.init.normal_(self.cls_token, std=.02)
def forward(self, x):
# x -> bz x 59 x 8000
# print(x.shape)
cls_token = self.cls_token.repeat(x.shape[0], 1, 1) # bz x 1 x 8000
x = torch.cat((x, cls_token), 1) # bz x 60 x 8000
x = self.blocks(x)
# cls_token = x[:, -1, :].squeeze(1).unsqueeze(-1) # bz x 8000 x 1
# attn_map = torch.bmm(x, cls_token).squeeze(-1) # bz x 60
# attn_map = self.relu(self.fc1(attn_map))
# attn_map = self.fc2(attn_map)
# return attn_map
cls_token = x[:, -1, :].squeeze(1)
cls_token = self.relu(self.fc1(cls_token))
cls_token = self.fc2(cls_token)
return cls_token
@register_model
def eegt(**kwargs):
model = EEGTransformer()
return model