[597177]: / logs / exp_4000_rdshift_drop_5e-6.txt

Download this file

344 lines (293 with data), 7.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
cuda:0
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
LayerNorm-1 [-1, 60, 4000] 8,000
Linear-2 [-1, 60, 12000] 48,000,000
Dropout-3 [-1, 8, 60, 60] 0
Linear-4 [-1, 60, 4000] 16,004,000
Dropout-5 [-1, 60, 4000] 0
Attention-6 [-1, 60, 4000] 0
Identity-7 [-1, 60, 4000] 0
LayerNorm-8 [-1, 60, 4000] 8,000
Linear-9 [-1, 60, 16000] 64,016,000
GELU-10 [-1, 60, 16000] 0
Dropout-11 [-1, 60, 16000] 0
Linear-12 [-1, 60, 4000] 64,004,000
Dropout-13 [-1, 60, 4000] 0
Mlp-14 [-1, 60, 4000] 0
Identity-15 [-1, 60, 4000] 0
Block-16 [-1, 60, 4000] 0
Linear-17 [-1, 512] 2,048,512
ReLU-18 [-1, 512] 0
Linear-19 [-1, 3] 1,539
================================================================
Total params: 194,090,051
Trainable params: 194,090,051
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.90
Forward/backward pass size (MB): 47.83
Params size (MB): 740.39
Estimated Total Size (MB): 789.13
----------------------------------------------------------------
None
data/BCICIV_calib_ds1e_1000Hz.mat
data/BCICIV_calib_ds1b_1000Hz.mat
data/BCICIV_calib_ds1g_1000Hz.mat
data/BCICIV_calib_ds1a_1000Hz.mat
data/BCICIV_calib_ds1f_1000Hz.mat
data/BCICIV_calib_ds1c_1000Hz.mat
data/BCICIV_calib_ds1d_1000Hz.mat
Epoch 1/50
----------
train Loss: 0.9897 Acc: 0.4710
val Loss: 0.8823 Acc: 0.5381
test Loss: 0.9435 Acc: 0.4700
Epoch 2/50
----------
train Loss: 0.9208 Acc: 0.4870
val Loss: 0.8754 Acc: 0.4873
test Loss: 0.9264 Acc: 0.4650
Epoch 3/50
----------
train Loss: 0.9026 Acc: 0.5130
val Loss: 0.8700 Acc: 0.5584
test Loss: 0.9040 Acc: 0.4850
Epoch 4/50
----------
train Loss: 0.8834 Acc: 0.5180
val Loss: 0.8779 Acc: 0.5330
test Loss: 0.9189 Acc: 0.4950
Epoch 5/50
----------
train Loss: 0.8793 Acc: 0.5160
val Loss: 0.8913 Acc: 0.5025
test Loss: 0.9220 Acc: 0.5100
Epoch 6/50
----------
train Loss: 0.8767 Acc: 0.5150
val Loss: 0.8924 Acc: 0.4721
test Loss: 0.9378 Acc: 0.4800
Epoch 7/50
----------
train Loss: 0.8623 Acc: 0.5440
val Loss: 0.9134 Acc: 0.4873
test Loss: 0.9279 Acc: 0.4950
Epoch 8/50
----------
train Loss: 0.8600 Acc: 0.5560
val Loss: 0.8563 Acc: 0.5330
test Loss: 0.8663 Acc: 0.5100
Epoch 9/50
----------
train Loss: 0.8447 Acc: 0.5550
val Loss: 0.9175 Acc: 0.5127
test Loss: 0.9322 Acc: 0.5050
Epoch 10/50
----------
train Loss: 0.8349 Acc: 0.5590
val Loss: 0.8813 Acc: 0.5025
test Loss: 0.9354 Acc: 0.4900
Epoch 11/50
----------
train Loss: 0.8307 Acc: 0.5530
val Loss: 0.9074 Acc: 0.4822
test Loss: 0.9585 Acc: 0.4350
Epoch 12/50
----------
train Loss: 0.8165 Acc: 0.5650
val Loss: 0.8927 Acc: 0.4873
test Loss: 0.9250 Acc: 0.5150
Epoch 13/50
----------
train Loss: 0.8270 Acc: 0.5560
val Loss: 0.9144 Acc: 0.4822
test Loss: 0.9091 Acc: 0.5000
Epoch 14/50
----------
train Loss: 0.8104 Acc: 0.5890
val Loss: 0.9114 Acc: 0.4873
test Loss: 0.9494 Acc: 0.5050
Epoch 15/50
----------
train Loss: 0.7973 Acc: 0.5780
val Loss: 0.9104 Acc: 0.5178
test Loss: 0.9146 Acc: 0.4750
Epoch 16/50
----------
train Loss: 0.8029 Acc: 0.5750
val Loss: 0.9151 Acc: 0.4924
test Loss: 0.8825 Acc: 0.5400
Epoch 17/50
----------
train Loss: 0.8019 Acc: 0.5960
val Loss: 0.9338 Acc: 0.5127
test Loss: 0.9370 Acc: 0.4550
Epoch 18/50
----------
train Loss: 0.7804 Acc: 0.6010
val Loss: 1.0304 Acc: 0.4873
test Loss: 0.9753 Acc: 0.4850
Epoch 19/50
----------
train Loss: 0.7987 Acc: 0.6190
val Loss: 0.9376 Acc: 0.5127
test Loss: 0.9415 Acc: 0.4750
Epoch 20/50
----------
train Loss: 0.7915 Acc: 0.5950
val Loss: 0.9324 Acc: 0.4772
test Loss: 0.9306 Acc: 0.5050
Epoch 21/50
----------
train Loss: 0.7755 Acc: 0.5870
val Loss: 0.9801 Acc: 0.4467
test Loss: 0.9802 Acc: 0.4650
Epoch 22/50
----------
train Loss: 0.7635 Acc: 0.6240
val Loss: 0.9781 Acc: 0.4873
test Loss: 0.9421 Acc: 0.5050
Epoch 23/50
----------
train Loss: 0.7750 Acc: 0.5970
val Loss: 1.0491 Acc: 0.4569
test Loss: 0.9612 Acc: 0.4850
Epoch 24/50
----------
train Loss: 0.7645 Acc: 0.5910
val Loss: 0.9290 Acc: 0.4924
test Loss: 0.9007 Acc: 0.5350
Epoch 25/50
----------
train Loss: 0.7625 Acc: 0.6190
val Loss: 0.9573 Acc: 0.5127
test Loss: 0.9385 Acc: 0.4950
Epoch 26/50
----------
train Loss: 0.7664 Acc: 0.6320
val Loss: 1.0182 Acc: 0.5127
test Loss: 0.9506 Acc: 0.5150
Epoch 27/50
----------
train Loss: 0.7564 Acc: 0.6180
val Loss: 0.9719 Acc: 0.5127
test Loss: 0.8991 Acc: 0.5400
Epoch 28/50
----------
train Loss: 0.7628 Acc: 0.6390
val Loss: 0.9616 Acc: 0.5127
test Loss: 0.9402 Acc: 0.5150
Epoch 29/50
----------
train Loss: 0.7669 Acc: 0.6040
val Loss: 0.9729 Acc: 0.4975
test Loss: 0.9425 Acc: 0.5050
Epoch 30/50
----------
train Loss: 0.7406 Acc: 0.6200
val Loss: 1.0118 Acc: 0.5482
test Loss: 1.0262 Acc: 0.4700
Epoch 31/50
----------
train Loss: 0.7598 Acc: 0.6250
val Loss: 1.0333 Acc: 0.5025
test Loss: 1.0044 Acc: 0.4500
Epoch 32/50
----------
train Loss: 0.7624 Acc: 0.6190
val Loss: 0.9830 Acc: 0.5330
test Loss: 0.9604 Acc: 0.5050
Epoch 33/50
----------
train Loss: 0.7805 Acc: 0.5790
val Loss: 0.9523 Acc: 0.5025
test Loss: 0.9751 Acc: 0.4750
Epoch 34/50
----------
train Loss: 0.7293 Acc: 0.6170
val Loss: 1.0755 Acc: 0.4924
test Loss: 0.9924 Acc: 0.5100
Epoch 35/50
----------
train Loss: 0.7344 Acc: 0.6130
val Loss: 1.0430 Acc: 0.5025
test Loss: 0.9844 Acc: 0.5200
Epoch 36/50
----------
train Loss: 0.7509 Acc: 0.6200
val Loss: 1.0191 Acc: 0.5127
test Loss: 0.9790 Acc: 0.5600
Epoch 37/50
----------
train Loss: 0.7274 Acc: 0.6510
val Loss: 1.0435 Acc: 0.4619
test Loss: 1.0777 Acc: 0.4400
Epoch 38/50
----------
train Loss: 0.7573 Acc: 0.6340
val Loss: 0.9202 Acc: 0.4822
test Loss: 0.9732 Acc: 0.4950
Epoch 39/50
----------
train Loss: 0.7131 Acc: 0.6470
val Loss: 1.0729 Acc: 0.4873
test Loss: 1.0118 Acc: 0.4650
Epoch 40/50
----------
train Loss: 0.7328 Acc: 0.6540
val Loss: 1.0579 Acc: 0.4873
test Loss: 1.0306 Acc: 0.5100
Epoch 41/50
----------
train Loss: 0.7222 Acc: 0.6410
val Loss: 0.9916 Acc: 0.4975
test Loss: 1.0313 Acc: 0.4800
Epoch 42/50
----------
train Loss: 0.7366 Acc: 0.6420
val Loss: 1.0321 Acc: 0.5025
test Loss: 0.9789 Acc: 0.5050
Epoch 43/50
----------
train Loss: 0.7330 Acc: 0.6360
val Loss: 0.9605 Acc: 0.4721
test Loss: 0.9759 Acc: 0.5250
Epoch 44/50
----------
train Loss: 0.7170 Acc: 0.6320
val Loss: 1.0656 Acc: 0.4619
test Loss: 0.9755 Acc: 0.5100
Epoch 45/50
----------
train Loss: 0.7201 Acc: 0.6510
val Loss: 0.9788 Acc: 0.5025
test Loss: 0.9803 Acc: 0.5150
Epoch 46/50
----------
train Loss: 0.7363 Acc: 0.6610
val Loss: 1.0472 Acc: 0.4721
test Loss: 0.9373 Acc: 0.5400
Epoch 47/50
----------
train Loss: 0.7054 Acc: 0.6650
val Loss: 1.0280 Acc: 0.4873
test Loss: 0.9511 Acc: 0.5200
Epoch 48/50
----------
train Loss: 0.6908 Acc: 0.6690
val Loss: 1.0956 Acc: 0.4924
test Loss: 1.0733 Acc: 0.4500
Epoch 49/50
----------
train Loss: 0.7180 Acc: 0.6470
val Loss: 1.0237 Acc: 0.5076
test Loss: 0.9955 Acc: 0.4700
Epoch 50/50
----------
train Loss: 0.7090 Acc: 0.6440
val Loss: 1.0600 Acc: 0.4975
test Loss: 1.0964 Acc: 0.4500
Training complete in 60m 4s
Best val Acc: 0.558376