[597177]: / logs / exp_4000_rdshift_5e-7.txt

Download this file

344 lines (293 with data), 7.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
cuda:0
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
LayerNorm-1 [-1, 60, 4000] 8,000
Linear-2 [-1, 60, 12000] 48,000,000
Dropout-3 [-1, 8, 60, 60] 0
Linear-4 [-1, 60, 4000] 16,004,000
Dropout-5 [-1, 60, 4000] 0
Attention-6 [-1, 60, 4000] 0
Identity-7 [-1, 60, 4000] 0
LayerNorm-8 [-1, 60, 4000] 8,000
Linear-9 [-1, 60, 16000] 64,016,000
GELU-10 [-1, 60, 16000] 0
Dropout-11 [-1, 60, 16000] 0
Linear-12 [-1, 60, 4000] 64,004,000
Dropout-13 [-1, 60, 4000] 0
Mlp-14 [-1, 60, 4000] 0
Identity-15 [-1, 60, 4000] 0
Block-16 [-1, 60, 4000] 0
Linear-17 [-1, 512] 2,048,512
ReLU-18 [-1, 512] 0
Linear-19 [-1, 3] 1,539
================================================================
Total params: 194,090,051
Trainable params: 194,090,051
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.90
Forward/backward pass size (MB): 47.83
Params size (MB): 740.39
Estimated Total Size (MB): 789.13
----------------------------------------------------------------
None
data/BCICIV_calib_ds1e_1000Hz.mat
data/BCICIV_calib_ds1b_1000Hz.mat
data/BCICIV_calib_ds1g_1000Hz.mat
data/BCICIV_calib_ds1a_1000Hz.mat
data/BCICIV_calib_ds1f_1000Hz.mat
data/BCICIV_calib_ds1c_1000Hz.mat
data/BCICIV_calib_ds1d_1000Hz.mat
Epoch 1/50
----------
train Loss: 1.0211 Acc: 0.4820
val Loss: 0.9764 Acc: 0.5330
test Loss: 1.0240 Acc: 0.4750
Epoch 2/50
----------
train Loss: 0.9457 Acc: 0.5030
val Loss: 0.9285 Acc: 0.5127
test Loss: 0.9886 Acc: 0.4650
Epoch 3/50
----------
train Loss: 0.9041 Acc: 0.5280
val Loss: 0.9121 Acc: 0.5127
test Loss: 0.9752 Acc: 0.4850
Epoch 4/50
----------
train Loss: 0.8927 Acc: 0.5100
val Loss: 0.9110 Acc: 0.5076
test Loss: 0.9573 Acc: 0.4800
Epoch 5/50
----------
train Loss: 0.8719 Acc: 0.5450
val Loss: 0.9154 Acc: 0.4822
test Loss: 0.9598 Acc: 0.4850
Epoch 6/50
----------
train Loss: 0.8696 Acc: 0.5310
val Loss: 0.9168 Acc: 0.4924
test Loss: 0.9553 Acc: 0.4450
Epoch 7/50
----------
train Loss: 0.8606 Acc: 0.5490
val Loss: 0.9051 Acc: 0.4518
test Loss: 0.9460 Acc: 0.4650
Epoch 8/50
----------
train Loss: 0.8593 Acc: 0.5660
val Loss: 0.8955 Acc: 0.5127
test Loss: 0.9409 Acc: 0.4450
Epoch 9/50
----------
train Loss: 0.8580 Acc: 0.5500
val Loss: 0.8945 Acc: 0.4924
test Loss: 0.9295 Acc: 0.4850
Epoch 10/50
----------
train Loss: 0.8481 Acc: 0.5600
val Loss: 0.8820 Acc: 0.5025
test Loss: 0.9340 Acc: 0.5050
Epoch 11/50
----------
train Loss: 0.8378 Acc: 0.5670
val Loss: 0.8864 Acc: 0.5228
test Loss: 0.9374 Acc: 0.5100
Epoch 12/50
----------
train Loss: 0.8326 Acc: 0.5750
val Loss: 0.9086 Acc: 0.4721
test Loss: 0.9382 Acc: 0.4600
Epoch 13/50
----------
train Loss: 0.8372 Acc: 0.5630
val Loss: 0.8896 Acc: 0.5025
test Loss: 0.9276 Acc: 0.4700
Epoch 14/50
----------
train Loss: 0.8321 Acc: 0.5660
val Loss: 0.9059 Acc: 0.4772
test Loss: 0.9227 Acc: 0.4850
Epoch 15/50
----------
train Loss: 0.8005 Acc: 0.5850
val Loss: 0.9147 Acc: 0.4873
test Loss: 0.9468 Acc: 0.4600
Epoch 16/50
----------
train Loss: 0.8013 Acc: 0.5720
val Loss: 0.9398 Acc: 0.4416
test Loss: 0.9556 Acc: 0.4850
Epoch 17/50
----------
train Loss: 0.8102 Acc: 0.6000
val Loss: 0.9638 Acc: 0.4569
test Loss: 0.9491 Acc: 0.4650
Epoch 18/50
----------
train Loss: 0.8045 Acc: 0.5740
val Loss: 0.9362 Acc: 0.4772
test Loss: 0.9330 Acc: 0.4600
Epoch 19/50
----------
train Loss: 0.7965 Acc: 0.5840
val Loss: 0.9432 Acc: 0.4721
test Loss: 0.9457 Acc: 0.4550
Epoch 20/50
----------
train Loss: 0.8083 Acc: 0.5810
val Loss: 0.8763 Acc: 0.5228
test Loss: 0.9183 Acc: 0.5000
Epoch 21/50
----------
train Loss: 0.7892 Acc: 0.5940
val Loss: 0.9020 Acc: 0.4619
test Loss: 0.9112 Acc: 0.4800
Epoch 22/50
----------
train Loss: 0.7814 Acc: 0.6180
val Loss: 0.9187 Acc: 0.5076
test Loss: 0.9268 Acc: 0.4950
Epoch 23/50
----------
train Loss: 0.7667 Acc: 0.6120
val Loss: 0.9415 Acc: 0.4873
test Loss: 0.9303 Acc: 0.4850
Epoch 24/50
----------
train Loss: 0.7572 Acc: 0.6400
val Loss: 0.9322 Acc: 0.5076
test Loss: 0.9447 Acc: 0.5150
Epoch 25/50
----------
train Loss: 0.7489 Acc: 0.6350
val Loss: 0.9303 Acc: 0.5330
test Loss: 0.9085 Acc: 0.5100
Epoch 26/50
----------
train Loss: 0.7656 Acc: 0.6080
val Loss: 0.9567 Acc: 0.5025
test Loss: 0.9517 Acc: 0.4750
Epoch 27/50
----------
train Loss: 0.7568 Acc: 0.6180
val Loss: 0.9697 Acc: 0.4924
test Loss: 0.8937 Acc: 0.5100
Epoch 28/50
----------
train Loss: 0.7692 Acc: 0.6270
val Loss: 0.9502 Acc: 0.4670
test Loss: 0.9323 Acc: 0.5100
Epoch 29/50
----------
train Loss: 0.7802 Acc: 0.6140
val Loss: 0.9800 Acc: 0.4670
test Loss: 0.9779 Acc: 0.4750
Epoch 30/50
----------
train Loss: 0.7504 Acc: 0.6390
val Loss: 0.9169 Acc: 0.5076
test Loss: 0.9288 Acc: 0.5100
Epoch 31/50
----------
train Loss: 0.7724 Acc: 0.6240
val Loss: 0.9116 Acc: 0.5482
test Loss: 0.9396 Acc: 0.5100
Epoch 32/50
----------
train Loss: 0.7525 Acc: 0.6290
val Loss: 0.9480 Acc: 0.5279
test Loss: 0.9757 Acc: 0.4550
Epoch 33/50
----------
train Loss: 0.7287 Acc: 0.6590
val Loss: 0.9929 Acc: 0.4619
test Loss: 0.9229 Acc: 0.5450
Epoch 34/50
----------
train Loss: 0.7599 Acc: 0.6070
val Loss: 0.9612 Acc: 0.5178
test Loss: 0.9624 Acc: 0.4300
Epoch 35/50
----------
train Loss: 0.7325 Acc: 0.6460
val Loss: 0.9414 Acc: 0.5330
test Loss: 0.9693 Acc: 0.4600
Epoch 36/50
----------
train Loss: 0.7492 Acc: 0.6260
val Loss: 0.9598 Acc: 0.5279
test Loss: 1.0015 Acc: 0.4800
Epoch 37/50
----------
train Loss: 0.7447 Acc: 0.6240
val Loss: 0.9932 Acc: 0.4619
test Loss: 1.0366 Acc: 0.4500
Epoch 38/50
----------
train Loss: 0.6880 Acc: 0.6690
val Loss: 1.0724 Acc: 0.5279
test Loss: 1.0444 Acc: 0.4650
Epoch 39/50
----------
train Loss: 0.7417 Acc: 0.6480
val Loss: 1.0000 Acc: 0.5330
test Loss: 0.9902 Acc: 0.5250
Epoch 40/50
----------
train Loss: 0.7345 Acc: 0.6420
val Loss: 0.9834 Acc: 0.5685
test Loss: 1.0127 Acc: 0.4700
Epoch 41/50
----------
train Loss: 0.6990 Acc: 0.6630
val Loss: 1.0695 Acc: 0.4822
test Loss: 0.9737 Acc: 0.5100
Epoch 42/50
----------
train Loss: 0.7158 Acc: 0.6560
val Loss: 0.9503 Acc: 0.5584
test Loss: 1.0307 Acc: 0.4550
Epoch 43/50
----------
train Loss: 0.7379 Acc: 0.6430
val Loss: 1.0447 Acc: 0.4822
test Loss: 1.0054 Acc: 0.4300
Epoch 44/50
----------
train Loss: 0.7236 Acc: 0.6620
val Loss: 0.9764 Acc: 0.5076
test Loss: 0.9995 Acc: 0.4900
Epoch 45/50
----------
train Loss: 0.6670 Acc: 0.6650
val Loss: 0.9997 Acc: 0.5025
test Loss: 1.1000 Acc: 0.4400
Epoch 46/50
----------
train Loss: 0.6976 Acc: 0.6470
val Loss: 0.9293 Acc: 0.5279
test Loss: 1.0334 Acc: 0.4600
Epoch 47/50
----------
train Loss: 0.7013 Acc: 0.6780
val Loss: 0.9315 Acc: 0.5178
test Loss: 0.9961 Acc: 0.4650
Epoch 48/50
----------
train Loss: 0.7115 Acc: 0.6680
val Loss: 0.9609 Acc: 0.5178
test Loss: 1.0162 Acc: 0.4850
Epoch 49/50
----------
train Loss: 0.6997 Acc: 0.6680
val Loss: 0.9317 Acc: 0.5228
test Loss: 0.9562 Acc: 0.5100
Epoch 50/50
----------
train Loss: 0.6155 Acc: 0.7090
val Loss: 1.0608 Acc: 0.4670
test Loss: 1.0940 Acc: 0.4450
Training complete in 59m 59s
Best val Acc: 0.568528