cuda:0
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
LayerNorm-1 [-1, 60, 4000] 8,000
Linear-2 [-1, 60, 12000] 48,000,000
Dropout-3 [-1, 8, 60, 60] 0
Linear-4 [-1, 60, 4000] 16,004,000
Dropout-5 [-1, 60, 4000] 0
Attention-6 [-1, 60, 4000] 0
Identity-7 [-1, 60, 4000] 0
LayerNorm-8 [-1, 60, 4000] 8,000
Linear-9 [-1, 60, 16000] 64,016,000
GELU-10 [-1, 60, 16000] 0
Dropout-11 [-1, 60, 16000] 0
Linear-12 [-1, 60, 4000] 64,004,000
Dropout-13 [-1, 60, 4000] 0
Mlp-14 [-1, 60, 4000] 0
Identity-15 [-1, 60, 4000] 0
Block-16 [-1, 60, 4000] 0
Linear-17 [-1, 512] 2,048,512
ReLU-18 [-1, 512] 0
Linear-19 [-1, 3] 1,539
================================================================
Total params: 194,090,051
Trainable params: 194,090,051
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.90
Forward/backward pass size (MB): 47.83
Params size (MB): 740.39
Estimated Total Size (MB): 789.13
----------------------------------------------------------------
None
data/BCICIV_calib_ds1e_1000Hz.mat
data/BCICIV_calib_ds1b_1000Hz.mat
data/BCICIV_calib_ds1g_1000Hz.mat
data/BCICIV_calib_ds1a_1000Hz.mat
data/BCICIV_calib_ds1f_1000Hz.mat
data/BCICIV_calib_ds1c_1000Hz.mat
data/BCICIV_calib_ds1d_1000Hz.mat
Epoch 1/50
----------
train Loss: 0.9835 Acc: 0.4820
val Loss: 0.8647 Acc: 0.4822
test Loss: 0.9316 Acc: 0.4800
Epoch 2/50
----------
train Loss: 0.8945 Acc: 0.5260
val Loss: 0.8808 Acc: 0.4924
test Loss: 0.9341 Acc: 0.4550
Epoch 3/50
----------
train Loss: 0.8206 Acc: 0.5870
val Loss: 0.9162 Acc: 0.5279
test Loss: 0.9872 Acc: 0.4950
Epoch 4/50
----------
train Loss: 0.7145 Acc: 0.6610
val Loss: 0.9413 Acc: 0.4975
test Loss: 1.0187 Acc: 0.4750
Epoch 5/50
----------
train Loss: 0.5951 Acc: 0.7370
val Loss: 1.0750 Acc: 0.5178
test Loss: 1.1746 Acc: 0.4550
Epoch 6/50
----------
train Loss: 0.4722 Acc: 0.7980
val Loss: 1.1398 Acc: 0.4924
test Loss: 1.2637 Acc: 0.4600
Epoch 7/50
----------
train Loss: 0.3630 Acc: 0.8550
val Loss: 1.4044 Acc: 0.4772
test Loss: 1.4628 Acc: 0.4550
Epoch 8/50
----------
train Loss: 0.3004 Acc: 0.8910
val Loss: 1.5723 Acc: 0.4822
test Loss: 1.6909 Acc: 0.4150
Epoch 9/50
----------
train Loss: 0.2460 Acc: 0.9120
val Loss: 1.7107 Acc: 0.4721
test Loss: 1.8489 Acc: 0.4400
Epoch 10/50
----------
train Loss: 0.2051 Acc: 0.9190
val Loss: 1.7861 Acc: 0.4772
test Loss: 1.9899 Acc: 0.4350
Epoch 11/50
----------
train Loss: 0.1665 Acc: 0.9380
val Loss: 1.7741 Acc: 0.4822
test Loss: 2.0483 Acc: 0.4450
Epoch 12/50
----------
train Loss: 0.1723 Acc: 0.9400
val Loss: 1.9901 Acc: 0.4315
test Loss: 2.1417 Acc: 0.4900
Epoch 13/50
----------
train Loss: 0.1719 Acc: 0.9300
val Loss: 2.2405 Acc: 0.4518
test Loss: 2.4855 Acc: 0.4550
Epoch 14/50
----------
train Loss: 0.1364 Acc: 0.9480
val Loss: 2.3124 Acc: 0.4975
test Loss: 2.3567 Acc: 0.4550
Epoch 15/50
----------
train Loss: 0.1326 Acc: 0.9490
val Loss: 2.0878 Acc: 0.5228
test Loss: 2.4201 Acc: 0.4300
Epoch 16/50
----------
train Loss: 0.1438 Acc: 0.9490
val Loss: 2.3455 Acc: 0.5279
test Loss: 2.7396 Acc: 0.4350
Epoch 17/50
----------
train Loss: 0.1082 Acc: 0.9540
val Loss: 2.5793 Acc: 0.4569
test Loss: 2.8569 Acc: 0.4700
Epoch 18/50
----------
train Loss: 0.1498 Acc: 0.9450
val Loss: 2.1692 Acc: 0.5279
test Loss: 2.6216 Acc: 0.4450
Epoch 19/50
----------
train Loss: 0.1396 Acc: 0.9470
val Loss: 2.6353 Acc: 0.4518
test Loss: 2.4803 Acc: 0.4350
Epoch 20/50
----------