import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
import pickle
import json
import matplotlib.pyplot as plt
from glob import glob
import time
import copy
from tqdm import tqdm
from transformers import BertLMHeadModel, BartTokenizer, BartForConditionalGeneration, BartConfig, \
BartForSequenceClassification, BertTokenizer, BertConfig, BertForSequenceClassification, RobertaTokenizer, \
RobertaForSequenceClassification
from data import ZuCo_dataset
from model_decoding import BrainTranslator, BrainTranslatorNaive
from config import get_config
def train_model(dataloaders, device, model, criterion, optimizer, scheduler, num_epochs=25,
checkpoint_path_best='./checkpoints/decoding/best/temp_decoding.pt',
checkpoint_path_last='./checkpoints/decoding/last/temp_decoding.pt'):
# modified from: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
os.makedirs(os.path.dirname(checkpoint_path_best), exist_ok=True)
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_loss = 100000000000
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'dev']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
# Iterate over data.
for (input_embeddings, seq_len, input_masks, input_mask_invert,
target_ids, target_mask, sentiment_labels, sent_level_EEG) in tqdm(dataloaders[phase]):
# print(input_embeddings, seq_len, input_masks, input_mask_invert,
# target_ids, target_mask, sentiment_labels, sent_level_EEG)
# load in batch
input_embeddings_batch = input_embeddings.to(device).float()
input_masks_batch = input_masks.to(device)
input_mask_invert_batch = input_mask_invert.to(device)
target_ids_batch = target_ids.to(device)
"""replace padding ids in target_ids with -100"""
target_ids_batch[target_ids_batch == tokenizer.pad_token_id] = -100
# zero the parameter gradients
optimizer.zero_grad()
# forward
seq2seqLMoutput = model(input_embeddings_batch, input_masks_batch, input_mask_invert_batch,
target_ids_batch)
"""calculate loss"""
# logits = seq2seqLMoutput.logits # 8*48*50265
# logits = logits.permute(0,2,1) # 8*50265*48
# loss = criterion(logits, target_ids_batch_label) # calculate cross entropy loss only on encoded target parts
# NOTE: my criterion not used
loss = seq2seqLMoutput.loss # use the BART language modeling loss
# """check prediction, instance 0 of each batch"""
# print('target size:', target_ids_batch.size(), ',original logits size:', logits.size(), ',target_mask size', target_mask_batch.size())
# logits = logits.permute(0,2,1)
# for idx in [0]:
# print(f'-- instance {idx} --')
# # print('permuted logits size:', logits.size())
# probs = logits[idx].softmax(dim = 1)
# # print('probs size:', probs.size())
# values, predictions = probs.topk(1)
# # print('predictions before squeeze:',predictions.size())
# predictions = torch.squeeze(predictions)
# # print('predictions:',predictions)
# # print('target mask:', target_mask_batch[idx])
# # print('[DEBUG]target tokens:',tokenizer.decode(target_ids_batch_copy[idx]))
# print('[DEBUG]predicted tokens:',tokenizer.decode(predictions))
# backward + optimize only if in training phase
if phase == 'train':
# with torch.autograd.detect_anomaly():
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * input_embeddings_batch.size()[0] # batch loss
# print('[DEBUG]loss:',loss.item())
# print('#################################')
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
print('{} Loss: {:.4f}'.format(phase, epoch_loss))
# deep copy the model
if phase == 'dev' and epoch_loss < best_loss:
best_loss = epoch_loss
best_model_wts = copy.deepcopy(model.state_dict())
'''save checkpoint'''
torch.save(model.state_dict(), checkpoint_path_best)
print(f'update best on dev checkpoint: {checkpoint_path_best}')
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val loss: {:4f}'.format(best_loss))
torch.save(model.state_dict(), checkpoint_path_last)
print(f'update last checkpoint: {checkpoint_path_last}')
# load best model weights
model.load_state_dict(best_model_wts)
return model
def show_require_grad_layers(model):
print()
print(' require_grad layers:')
# sanity check
for name, param in model.named_parameters():
if param.requires_grad:
print(' ', name)
if __name__ == '__main__':
home_directory = os.path.expanduser("~")
args = get_config('train_decoding')
''' config param'''
dataset_setting = 'unique_sent'
num_epochs_step1 = args['num_epoch_step1']
num_epochs_step2 = args['num_epoch_step2']
step1_lr = args['learning_rate_step1']
step2_lr = args['learning_rate_step2']
batch_size = args['batch_size']
model_name = args['model_name']
# model_name = 'BrainTranslatorNaive' # with no additional transformers
# model_name = 'BrainTranslator'
# task_name = 'task1'
# task_name = 'task1_task2'
# task_name = 'task1_task2_task3'
# task_name = 'task1_task2_taskNRv2'
task_name = args['task_name']
save_path = args['save_path']
if not os.path.exists(save_path):
os.makedirs(save_path)
skip_step_one = args['skip_step_one']
load_step1_checkpoint = args['load_step1_checkpoint']
use_random_init = args['use_random_init']
if use_random_init and skip_step_one:
step2_lr = 5*1e-4
print(f'[INFO]using model: {model_name}')
if skip_step_one:
save_name = f'{task_name}_finetune_{model_name}_skipstep1_b{batch_size}_{num_epochs_step1}_{num_epochs_step2}_{step1_lr}_{step2_lr}_{dataset_setting}'
else:
save_name = f'{task_name}_finetune_{model_name}_2steptraining_b{batch_size}_{num_epochs_step1}_{num_epochs_step2}_{step1_lr}_{step2_lr}_{dataset_setting}'
if use_random_init:
save_name = 'randinit_' + save_name
save_path_best = os.path.join(save_path, 'best')
if not os.path.exists(save_path_best):
os.makedirs(save_path_best)
output_checkpoint_name_best = os.path.join(save_path_best, f'{save_name}.pt')
save_path_last = os.path.join(save_path, 'last')
if not os.path.exists(save_path_last):
os.makedirs(save_path_last)
output_checkpoint_name_last = os.path.join(save_path_last, f'{save_name}.pt')
# subject_choice = 'ALL
subject_choice = args['subjects']
print(f'![Debug]using {subject_choice}')
# eeg_type_choice = 'GD
eeg_type_choice = args['eeg_type']
print(f'[INFO]eeg type {eeg_type_choice}')
# bands_choice = ['_t1']
# bands_choice = ['_t1','_t2','_a1','_a2','_b1','_b2','_g1','_g2']
bands_choice = args['eeg_bands']
print(f'[INFO]using bands {bands_choice}')
''' set random seeds '''
seed_val = 312
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
''' set up device '''
# use cuda
if torch.cuda.is_available():
# dev = "cuda:3"
dev = args['cuda']
else:
dev = "cpu"
# CUDA_VISIBLE_DEVICES=0,1,2,3
device = torch.device(dev)
print(f'[INFO]using device {dev}')
print()
''' set up dataloader '''
whole_dataset_dicts = []
if 'task1' in task_name:
dataset_path_task1 = 'datasets/ZuCo/task1-SR/pickle/task1-SR-dataset.pickle'
dataset_path_task1=os.path.join(home_directory,dataset_path_task1)
with open(dataset_path_task1, 'rb') as handle:
whole_dataset_dicts.append(pickle.load(handle))
if 'task2' in task_name:
dataset_path_task2 = 'datasets/ZuCo/task2-NR/pickle/task2-NR-dataset.pickle'
dataset_path_task2=os.path.join(home_directory,dataset_path_task2)
with open(dataset_path_task2, 'rb') as handle:
whole_dataset_dicts.append(pickle.load(handle))
if 'task3' in task_name:
dataset_path_task3 = 'datasets/ZuCo/task3-TSR/pickle/task3-TSR-dataset.pickle'
dataset_path_task3=os.path.join(home_directory,dataset_path_task3)
with open(dataset_path_task3, 'rb') as handle:
whole_dataset_dicts.append(pickle.load(handle))
if 'taskNRv2' in task_name:
dataset_path_taskNRv2 = 'datasets/ZuCo/task2-NR-2.0/pickle/task2-NR-2.0-dataset.pickle'
dataset_path_taskNRv2=os.path.join(home_directory,dataset_path_taskNRv2)
with open(dataset_path_taskNRv2, 'rb') as handle:
whole_dataset_dicts.append(pickle.load(handle))
print()
"""save config"""
cfg_dir = './config/decoding/'
if not os.path.exists(cfg_dir):
os.makedirs(cfg_dir)
with open(os.path.join(cfg_dir,f'{save_name}.json'), 'w') as out_config:
json.dump(args, out_config, indent = 4)
if model_name in ['BrainTranslator','BrainTranslatorNaive']:
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
elif model_name == 'BertGeneration':
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
config = BertConfig.from_pretrained("bert-base-cased")
config.is_decoder = True
# train dataset
train_set = ZuCo_dataset(whole_dataset_dicts, 'train', tokenizer, subject = subject_choice, eeg_type = eeg_type_choice, bands = bands_choice, setting = dataset_setting)
# dev dataset
dev_set = ZuCo_dataset(whole_dataset_dicts, 'dev', tokenizer, subject = subject_choice, eeg_type = eeg_type_choice, bands = bands_choice, setting = dataset_setting)
# test dataset
# test_set = ZuCo_dataset(whole_dataset_dict, 'test', tokenizer, subject = subject_choice, eeg_type = eeg_type_choice, bands = bands_choice)
dataset_sizes = {'train': len(train_set), 'dev': len(dev_set)}
print('[INFO]train_set size: ', len(train_set))
print('[INFO]dev_set size: ', len(dev_set))
# train dataloader
train_dataloader = DataLoader(train_set, batch_size = batch_size, shuffle=True, num_workers=4)
# dev dataloader
val_dataloader = DataLoader(dev_set, batch_size = 1, shuffle=False, num_workers=4)
# dataloaders
dataloaders = {'train':train_dataloader, 'dev':val_dataloader}
''' set up model '''
if model_name == 'BrainTranslator':
if use_random_init:
config = BartConfig.from_pretrained('facebook/bart-large')
pretrained = BartForConditionalGeneration(config)
else:
pretrained = BartForConditionalGeneration.from_pretrained('facebook/bart-large')
model = BrainTranslator(pretrained, in_feature = 105*len(bands_choice), decoder_embedding_size = 1024, additional_encoder_nhead=8, additional_encoder_dim_feedforward = 2048)
elif model_name == 'BertGeneration':
pretrained = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
model = BrainTranslator(pretrained, in_feature = 105*len(bands_choice), decoder_embedding_size = 768, additional_encoder_nhead=8, additional_encoder_dim_feedforward = 2048)
elif model_name == 'BrainTranslatorNaive':
pretrained = BartForConditionalGeneration.from_pretrained('facebook/bart-large')
model = BrainTranslatorNaive(pretrained, in_feature = 105*len(bands_choice), decoder_embedding_size = 1024, additional_encoder_nhead=8, additional_encoder_dim_feedforward = 2048)
model.to(device)
''' training loop '''
######################################################
'''step one trainig: freeze most of BART params'''
######################################################
# closely follow BART paper
if model_name in ['BrainTranslator','BrainTranslatorNaive']:
for name, param in model.named_parameters():
if param.requires_grad and 'pretrained' in name:
if ('shared' in name) or ('embed_positions' in name) or ('encoder.layers.0' in name):
continue
else:
param.requires_grad = False
elif model_name == 'BertGeneration':
for name, param in model.named_parameters():
if param.requires_grad and 'pretrained' in name:
if ('embeddings' in name) or ('encoder.layer.0' in name):
continue
else:
param.requires_grad = False
if skip_step_one:
if load_step1_checkpoint:
stepone_checkpoint = 'path_to_step_1_checkpoint.pt'
print(f'skip step one, load checkpoint: {stepone_checkpoint}')
model.load_state_dict(torch.load(stepone_checkpoint))
else:
print('skip step one, start from scratch at step two')
else:
''' set up optimizer and scheduler'''
optimizer_step1 = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=step1_lr, momentum=0.9)
exp_lr_scheduler_step1 = lr_scheduler.StepLR(optimizer_step1, step_size=20, gamma=0.1)
''' set up loss function '''
criterion = nn.CrossEntropyLoss()
print('=== start Step1 training ... ===')
# print training layers
show_require_grad_layers(model)
# return best loss model from step1 training
model = train_model(dataloaders, device, model, criterion, optimizer_step1, exp_lr_scheduler_step1, num_epochs=num_epochs_step1, checkpoint_path_best = output_checkpoint_name_best, checkpoint_path_last = output_checkpoint_name_last)
######################################################
'''step two trainig: update whole model for a few iterations'''
######################################################
for name, param in model.named_parameters():
param.requires_grad = True
''' set up optimizer and scheduler'''
optimizer_step2 = optim.SGD(model.parameters(), lr=step2_lr, momentum=0.9)
exp_lr_scheduler_step2 = lr_scheduler.StepLR(optimizer_step2, step_size=30, gamma=0.1)
''' set up loss function '''
criterion = nn.CrossEntropyLoss()
print()
print('=== start Step2 training ... ===')
# print training layers
show_require_grad_layers(model)
'''main loop'''
trained_model = train_model(dataloaders, device, model, criterion, optimizer_step2, exp_lr_scheduler_step2, num_epochs=num_epochs_step2, checkpoint_path_best = output_checkpoint_name_best, checkpoint_path_last = output_checkpoint_name_last)
# '''save checkpoint'''
# torch.save(trained_model.state_dict(), os.path.join(save_path,output_checkpoint_name))