#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Notice:
[1] This code is only for reference.
Please modify the codes to fit your own data.
[2] The Code is based on TensorFlow 2.X.
Please install the TensorFlow 2.X version.
"""
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow import keras
# Read Training Data
train_data = pd.read_csv('../source/S-traindata.csv', header=None)
train_data = np.array(train_data).astype('float32')
# Read Training Labels
train_labels = pd.read_csv('../source/S-trainlabel.csv', header=None)
train_labels = np.array(train_labels).astype('float32')
train_labels = tf.one_hot(indices=train_labels, depth=2)
train_labels = np.squeeze(train_labels)
# Read Testing Data
test_data = pd.read_csv('../source/S-testdata.csv', header=None)
test_data = np.array(test_data).astype('float32')
# Read Testing Labels
test_labels = pd.read_csv('../source/S-testlabel.csv', header=None)
test_labels = np.array(test_labels).astype('float32')
test_labels = tf.one_hot(indices=test_labels, depth=2)
test_labels = np.squeeze(test_labels)
class CatgoricalTP(tf.keras.metrics.Metric):
def __init__(self, name='categorical_tp', **kwargs):
super(CatgoricalTP, self).__init__(name=name, **kwargs)
self.tp = self.add_weight(name='tp', initializer='zeros')
def update_state(self, y_true, y_pred, sample_weight=None):
y_pred = tf.argmax(y_pred, axis=-1)
y_true = tf.argmax(y_true, axis=-1)
values = tf.equal(tf.cast(y_pred, 'int32'), tf.cast(y_true, 'int32'))
values = tf.cast(values, 'float32')
if sample_weight is not None:
sample_weights = tf.cast(sample_weight, 'float32')
values = tf.multiply(values, sample_weights)
self.tp.assign_add(tf.reduce_sum(values))
def result(self):
return self.tp
def reset_states(self):
self.tp.assign(0.)
class TransformerBlock(layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.5):
super(TransformerBlock, self).__init__()
self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
self.ffn = keras.Sequential([layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim), ])
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.ff_dim = ff_dim
self.rate = rate
def call(self, inputs, training):
attn_output = self.att(inputs, inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
out = self.layernorm2(out1 + ffn_output)
return out
class TokenAndPositionEmbedding(layers.Layer):
def __init__(self, maxlen, embed_dim):
super(TokenAndPositionEmbedding, self).__init__()
self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim)
self.maxlen = maxlen
self.embed_dim = embed_dim
def call(self, x):
positions = tf.range(start=0, limit=self.maxlen, delta=1)
positions = self.pos_emb(positions)
x = tf.reshape(x, [-1, self.maxlen, self.embed_dim])
out = x + positions
return out
maxlen = 3 # (Maximum) length of the signals
embed_dim = 97 # Number of features of one time point
num_heads = 8 # Number of attention heads
ff_dim = 64 # Hidden layer size in feed forward network inside transformer
def get_model():
# Input Time-series
inputs = layers.Input(shape=(maxlen * embed_dim,))
embedding_layer = TokenAndPositionEmbedding(maxlen, embed_dim)
x = embedding_layer(inputs)
# Encoder Architecture
transformer_block_1 = TransformerBlock(embed_dim=embed_dim, num_heads=num_heads, ff_dim=ff_dim)
transformer_block_2 = TransformerBlock(embed_dim=embed_dim, num_heads=num_heads, ff_dim=ff_dim)
x = transformer_block_1(x)
x = transformer_block_2(x)
# Output
x = layers.GlobalMaxPooling1D()(x)
x = layers.Dropout(0.5)(x)
x = layers.Dense(64, activation="relu")(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(2, activation="softmax")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
model = get_model()
model.compile(optimizer=tf.keras.optimizers.Adam(lr=1e-4),
loss="categorical_crossentropy",
metrics=["accuracy", CatgoricalTP()])
history = model.fit(
train_data, train_labels, batch_size=64, epochs=100, validation_data=(test_data, test_labels)
)
model.save_weights('model_weight')