Diff of /Models/main-LSTM.py [000000] .. [259458]

Switch to side-by-side view

--- a
+++ b/Models/main-LSTM.py
@@ -0,0 +1,151 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+# Import useful packages
+from __future__ import absolute_import
+from __future__ import print_function
+from __future__ import division
+
+# Hide the Configuration and Warnings
+import os
+os.environ["TF_CPP_MIN_LOG_LEVEL"] = '3'
+
+import random
+import numpy as np
+import tensorflow as tf
+from Models.DatasetAPI.DataLoader import DatasetLoader
+from Models.Network.LSTM import LSTM
+from Models.Loss_Function.Loss import loss
+from Models.Evaluation_Metrics.Metrics import evaluation
+
+# Model Name
+Model = 'Long_Short_Term_Memory'
+
+# Clear all the stack and use GPU resources as much as possible
+tf.reset_default_graph()
+config = tf.ConfigProto()
+config.gpu_options.allow_growth = True
+sess = tf.Session(config=config)
+
+# Your Dataset Location, for example EEG-Motor-Movement-Imagery-Dataset
+# The CSV file should be named as training_set.csv, training_label.csv, test_set.csv, and test_label.csv
+DIR = 'DatasetAPI/EEG-Motor-Movement-Imagery-Dataset/'
+SAVE = 'Saved_Files/' + Model + '/'
+if not os.path.exists(SAVE):  # If the SAVE folder doesn't exist, create one
+    os.mkdir(SAVE)
+
+# Load the dataset, here it uses one-hot representation for labels
+train_data, train_labels, test_data, test_labels = DatasetLoader(DIR=DIR)
+train_labels = tf.one_hot(indices=train_labels, depth=4)
+train_labels = tf.squeeze(train_labels).eval(session=sess)
+test_labels = tf.one_hot(indices=test_labels, depth=4)
+test_labels = tf.squeeze(test_labels).eval(session=sess)
+
+# Model Hyper-parameters
+n_input   = 64   # The input size of signals at each time
+max_time  = 64   # The unfolded time slices of the LSTM Model
+lstm_size = 256  # The number of RNNs inside the LSTM Model
+
+n_class   = 4     # The number of classification classes
+n_hidden  = 64    # The number of hidden units in the first fully-connected layer
+num_epoch = 300   # The number of Epochs that the Model run
+keep_rate = 0.75  # Keep rate of the Dropout
+
+lr = tf.constant(1e-4, dtype=tf.float32)  # Learning rate
+lr_decay_epoch = 50    # Every (50) epochs, the learning rate decays
+lr_decay       = 0.50  # Learning rate Decay by (50%)
+
+batch_size = 1024
+n_batch = train_data.shape[0] // batch_size
+
+# Initialize Model Parameters (Network Weights and Biases)
+# This Model only uses Two fully-connected layers, and u sure can add extra layers DIY
+weights_1 = tf.Variable(tf.truncated_normal([lstm_size, n_hidden], stddev=0.01))
+biases_1  = tf.Variable(tf.constant(0.01, shape=[n_hidden]))
+weights_2 = tf.Variable(tf.truncated_normal([n_hidden, n_class], stddev=0.01))
+biases_2  = tf.Variable(tf.constant(0.01, shape=[n_class]))
+
+# Define Placeholders
+x = tf.placeholder(tf.float32, [None, 64 * 64])
+y = tf.placeholder(tf.float32, [None, 4])
+keep_prob = tf.placeholder(tf.float32)
+
+# Load Model Network
+prediction, features = LSTM(Input=x,
+                            max_time=max_time,
+                            n_input=n_input,
+                            lstm_size=lstm_size,
+                            keep_prob=keep_prob,
+                            weights_1=weights_1,
+                            biases_1=biases_1,
+                            weights_2=weights_2,
+                            biases_2=biases_2)
+
+# Load Loss Function
+loss = loss(y=y, prediction=prediction, l2_norm=True)
+
+# Load Optimizer
+train_step = tf.train.AdamOptimizer(lr).minimize(loss)
+
+# Load Evaluation Metrics
+Global_Average_Accuracy = evaluation(y=y, prediction=prediction)
+
+# Merge all the summaries
+merged = tf.summary.merge_all()
+train_writer = tf.summary.FileWriter(SAVE + '/train_Writer', sess.graph)
+test_writer = tf.summary.FileWriter(SAVE + '/test_Writer')
+
+# Initialize all the variables
+sess.run(tf.global_variables_initializer())
+for epoch in range(num_epoch + 1):
+    # U can use learning rate decay or not
+    # Here, we set a minimum learning rate
+    # If u don't want this, u definitely can modify the following lines
+    learning_rate = sess.run(lr)
+    if epoch % lr_decay_epoch == 0 and epoch != 0:
+        if learning_rate <= 1e-6:
+            lr = lr * 1.0
+            sess.run(lr)
+        else:
+            lr = lr * lr_decay
+            sess.run(lr)
+
+    # Randomly shuffle the training dataset and train the Model
+    for batch_index in range(n_batch):
+        random_batch = random.sample(range(train_data.shape[0]), batch_size)
+        batch_xs = train_data[random_batch]
+        batch_ys = train_labels[random_batch]
+        sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys, keep_prob: keep_rate})
+
+    # Show Accuracy and Loss on Training and Test Set
+    # Here, for training set, we only show the result of first 100 samples
+    # If u want to show the result on the entire training set, please modify it.
+    train_accuracy, train_loss = sess.run([Global_Average_Accuracy, loss], feed_dict={x: train_data[0:100], y: train_labels[0:100], keep_prob: 1.0})
+    Test_summary, test_accuracy, test_loss = sess.run([merged, Global_Average_Accuracy, loss], feed_dict={x: test_data, y: test_labels, keep_prob: 1.0})
+    test_writer.add_summary(Test_summary, epoch)
+
+    # Show the Model Capability
+    print("Iter " + str(epoch) + ", Testing Accuracy: " + str(test_accuracy) + ", Training Accuracy: " + str(train_accuracy))
+    print("Iter " + str(epoch) + ", Testing Loss: " + str(test_loss) + ", Training Loss: " + str(train_loss))
+    print("Learning rate is ", learning_rate)
+    print('\n')
+
+    # Save the prediction and labels for testing set
+    # The "labels_for_test.csv" is the same as the "test_label.csv"
+    # We will use the files to draw ROC CCurve and AUC
+    if epoch == num_epoch:
+        output_prediction = sess.run(prediction, feed_dict={x: test_data, y: test_labels, keep_prob: 1.0})
+        np.savetxt(SAVE + "prediction_for_test.csv", output_prediction, delimiter=",")
+        np.savetxt(SAVE + "labels_for_test.csv", test_labels, delimiter=",")
+
+    # if you want to extract and save the features from fully-connected layer, use all the dataset and uncomment this.
+    # All data is the total data = training data + testing data
+    # We use the features from the overall dataset
+    # ML models might be used to classify the features further
+    # if epoch == num_epoch:
+    #     Features = sess.run(features, feed_dict={x: all_data, y: all_labels, keep_prob: 1.0})
+    #     np.savetxt(SAVE + "Features.csv", features, delimiter=",")
+
+train_writer.close()
+test_writer.close()
+sess.close()