--- a +++ b/Models/Network/DNN.py @@ -0,0 +1,36 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +# Import useful packages +import tensorflow as tf + + +def DNN(Input, keep_prob, weights_1, biases_1, weights_2, biases_2): + ''' + + Args: + Input: The input EEG signals + keep_prob: The Keep probability of Dropout + weights_1: The Weights of first fully-connected layer + biases_1: The biases of first fully-connected layer + weights_2: The Weights of second fully-connected layer + biases_2: The biases of second fully-connected layer + + Returns: + FC_2: Final prediction of DNN Model + FC_1: Extracted features from the first fully connected layer + + ''' + + # First fully-connected layer + FC_1 = tf.matmul(Input, weights_1) + biases_1 + FC_1 = tf.layers.batch_normalization(FC_1, training=True) + FC_1 = tf.nn.softplus(FC_1) + FC_1 = tf.nn.dropout(FC_1, keep_prob) + + # Second fully-connected layer + FC_2 = tf.matmul(FC_1, weights_2) + biases_2 + FC_2 = tf.nn.softmax(FC_2) + + return FC_2, FC_1 +