a b/Models/Network/CNN.py
1
#!/usr/bin/env python
2
# -*- coding: utf-8 -*-
3
4
# Import useful packages
5
import tensorflow as tf
6
from Models.Initialize_Variables.Initialize import *
7
8
9
def CNN(Input, keep_prob):
10
    '''
11
12
    Args:
13
        Input: The reshaped input EEG signals
14
        keep_prob: The Keep probability of Dropout
15
16
    Returns:
17
        prediction: Final prediction of CNN Model
18
19
    '''
20
21
    # Input reshaped EEG signals
22
    x_Reshape = tf.reshape(tensor=Input, shape=[-1, 64, 64, 1])
23
24
    # First Convolutional Layer
25
    W_conv1 = weight_variable([3, 3, 1, 32])
26
    b_conv1 = bias_variable([32])
27
    h_conv1 = tf.nn.conv2d(x_Reshape, W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1
28
    h_conv1_Acti = tf.nn.leaky_relu(h_conv1)
29
    h_conv1_drop = tf.nn.dropout(h_conv1_Acti, keep_prob, noise_shape=[tf.shape(h_conv1_Acti)[0], 1, 1, tf.shape(h_conv1_Acti)[3]])
30
31
    # Second Convolutional Layer
32
    W_conv2 = weight_variable([3, 3, 32, 32])
33
    b_conv2 = bias_variable([32])
34
    h_conv2 = tf.nn.conv2d(h_conv1_drop, W_conv2, strides=[1, 1, 1, 1], padding='SAME') + b_conv2
35
    h_conv2_BN = tf.layers.batch_normalization(h_conv2, training=True)
36
    h_conv2_Acti = tf.nn.leaky_relu(h_conv2_BN)
37
38
    # Third Convolutional Layer
39
    W_conv3 = weight_variable([3, 3, 64, 64])
40
    b_conv3 = bias_variable([64])
41
    h_conv3_res = tf.concat([h_conv2_Acti, h_conv1_drop], axis=3)
42
    h_conv3 = tf.nn.conv2d(h_conv3_res, W_conv3, strides=[1, 1, 1, 1], padding='SAME') + b_conv3
43
    h_conv3_Acti = tf.nn.leaky_relu(h_conv3)
44
    h_conv3_drop = tf.nn.dropout(h_conv3_Acti, keep_prob, noise_shape=[tf.shape(h_conv3_Acti)[0], 1, 1, tf.shape(h_conv3_Acti)[3]])
45
46
    # First Max Pooling Layer
47
    h_pool3 = tf.nn.max_pool(h_conv3_drop, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
48
49
    # Fourth Convolutional Layer
50
    W_conv4 = weight_variable([3, 3, 64, 64])
51
    b_conv4 = bias_variable([64])
52
    h_conv4 = tf.nn.conv2d(h_pool3, W_conv4, strides=[1, 1, 1, 1], padding='VALID') + b_conv4
53
    h_conv4_BN = tf.layers.batch_normalization(h_conv4, training=True)
54
    h_conv4_Acti = tf.nn.leaky_relu(h_conv4_BN)
55
    h_conv4_drop = tf.nn.dropout(h_conv4_Acti, keep_prob, noise_shape=[tf.shape(h_conv4_Acti)[0], 1, 1, tf.shape(h_conv4_Acti)[3]])
56
57
    # Fifth Convolutional Layer
58
    W_conv5 = weight_variable([3, 3, 64, 64])
59
    b_conv5 = bias_variable([64])
60
    h_conv5 = tf.nn.conv2d(h_conv4_drop, W_conv5, strides=[1, 1, 1, 1], padding='SAME') + b_conv5
61
    h_conv5_BN = tf.layers.batch_normalization(h_conv5, training=True)
62
    h_conv5_Acti = tf.nn.leaky_relu(h_conv5_BN)
63
64
    # Sixth Convolutional Layer
65
    W_conv6 = weight_variable([3, 3, 128, 128])
66
    b_conv6 = bias_variable([128])
67
    h_conv6_res = tf.concat([h_conv5_Acti, h_conv4_drop], axis=3)
68
    h_conv6 = tf.nn.conv2d(h_conv6_res, W_conv6, strides=[1, 1, 1, 1], padding='SAME') + b_conv6
69
    h_conv6_Acti = tf.nn.leaky_relu(h_conv6)
70
    h_conv6_drop = tf.nn.dropout(h_conv6_Acti, keep_prob, noise_shape=[tf.shape(h_conv6_Acti)[0], 1, 1, tf.shape(h_conv6_Acti)[3]])
71
72
    # Second Max Pooling Layer
73
    h_pool6 = tf.nn.max_pool(h_conv6_drop, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
74
75
    # Flatten Layer
76
    h_pool6_flat = tf.reshape(h_pool6, [-1, 15 * 15 * 128])
77
78
    # First Fully Connected Layer
79
    W_fc1 = weight_variable([15 * 15 * 128, 512])
80
    b_fc1 = bias_variable([512])
81
    h_fc1 = tf.matmul(h_pool6_flat, W_fc1) + b_fc1
82
    h_fc1_BN = tf.layers.batch_normalization(h_fc1, training=True)
83
    h_fc1_Acti = tf.nn.leaky_relu(h_fc1_BN)
84
    h_fc1_drop = tf.nn.dropout(h_fc1_Acti, keep_prob)
85
86
    # Second Fully Connected Layer
87
    W_fc2 = weight_variable([512, 4])
88
    b_fc2 = bias_variable([4])
89
    prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
90
91
    return prediction