|
a |
|
b/Draw_Photos/Draw_Loss_Photo.m |
|
|
1 |
clear all |
|
|
2 |
clc |
|
|
3 |
|
|
|
4 |
format long |
|
|
5 |
|
|
|
6 |
model1 = readmatrix("Model_1/run-.-tag-loss.csv"); |
|
|
7 |
model2 = readmatrix("Model_2/run-.-tag-loss.csv"); |
|
|
8 |
model3 = readmatrix("Model_3/run-.-tag-loss.csv"); |
|
|
9 |
model4 = readmatrix("Model_4/run-.-tag-loss.csv"); |
|
|
10 |
model5 = readmatrix("Model_5/run-.-tag-loss.csv"); |
|
|
11 |
model6 = readmatrix("Model_6/run-.-tag-loss.csv"); |
|
|
12 |
model7 = readmatrix("Model_7/run-.-tag-loss.csv"); |
|
|
13 |
model8 = readmatrix("Model_8/run-.-tag-loss.csv"); |
|
|
14 |
model9 = readmatrix("Model_9/run-.-tag-loss.csv"); |
|
|
15 |
model10 = readmatrix("Model_10/run-.-tag-loss.csv"); |
|
|
16 |
model11 = readmatrix("Model_11/run-.-tag-loss.csv"); |
|
|
17 |
model12 = readmatrix("Model_12/run-.-tag-loss.csv"); |
|
|
18 |
|
|
|
19 |
model1_x_axis = model1(:, 2); |
|
|
20 |
model1_y_axis = model1(:, 3); |
|
|
21 |
model2_x_axis = model2(:, 2); |
|
|
22 |
model2_y_axis = model2(:, 3); |
|
|
23 |
model3_x_axis = model3(:, 2); |
|
|
24 |
model3_y_axis = model3(:, 3); |
|
|
25 |
model4_x_axis = model4(:, 2); |
|
|
26 |
model4_y_axis = model4(:, 3); |
|
|
27 |
model5_x_axis = model5(:, 2); |
|
|
28 |
model5_y_axis = model5(:, 3); |
|
|
29 |
model6_x_axis = model6(:, 2); |
|
|
30 |
model6_y_axis = model6(:, 3); |
|
|
31 |
model7_x_axis = model7(:, 2); |
|
|
32 |
model7_y_axis = model7(:, 3); |
|
|
33 |
model8_x_axis = model8(:, 2); |
|
|
34 |
model8_y_axis = model8(:, 3); |
|
|
35 |
model9_x_axis = model9(:, 2); |
|
|
36 |
model9_y_axis = model9(:, 3); |
|
|
37 |
model10_x_axis = model10(:, 2); |
|
|
38 |
model10_y_axis = model10(:, 3); |
|
|
39 |
model11_x_axis = model11(:, 2); |
|
|
40 |
model11_y_axis = model11(:, 3); |
|
|
41 |
model12_x_axis = model12(:, 2); |
|
|
42 |
model12_y_axis = model12(:, 3); |
|
|
43 |
|
|
|
44 |
color=[1 0 0; 0 1 0; 0 0 1; 0.5 1 1; |
|
|
45 |
1 1 0.5; 1 0.5 1; 0 0 0.5; 0.5 0 0; |
|
|
46 |
0 0.5 0; 1 0.5 0.5; 0.5 1 0.5; 0.5 0.5 1; |
|
|
47 |
1 1 0;0 1 1;1 0 1]; |
|
|
48 |
|
|
|
49 |
% Draw the Images |
|
|
50 |
figure(1) |
|
|
51 |
plot(model1_x_axis, model1_y_axis, 'linewidth', 1.2, 'color', color(8, :)); |
|
|
52 |
hold on |
|
|
53 |
plot(model2_x_axis, model2_y_axis, 'linewidth', 1.2, 'color', color(2, :)); |
|
|
54 |
hold on |
|
|
55 |
plot(model3_x_axis, model3_y_axis, 'linewidth', 1.2, 'color', color(3, :)); |
|
|
56 |
hold on |
|
|
57 |
plot(model4_x_axis, model4_y_axis, 'linewidth', 1.2, 'color', color(4, :)); |
|
|
58 |
hold on |
|
|
59 |
plot(model5_x_axis, model5_y_axis, 'linewidth', 1.2, 'color', color(5, :)); |
|
|
60 |
hold on |
|
|
61 |
plot(model6_x_axis, model6_y_axis, 'linewidth', 1.2, 'color', color(6, :)); |
|
|
62 |
hold on |
|
|
63 |
plot(model7_x_axis, model7_y_axis, 'linewidth', 1.2, 'color', color(7, :)); |
|
|
64 |
hold on |
|
|
65 |
plot(model8_x_axis, model8_y_axis, 'linewidth', 1.2, 'color', color(1, :)); |
|
|
66 |
hold on |
|
|
67 |
plot(model9_x_axis, model9_y_axis, 'linewidth', 1.2, 'color', color(9, :)); |
|
|
68 |
hold on |
|
|
69 |
plot(model10_x_axis, model10_y_axis, 'linewidth', 1.2, 'color', color(10, :)); |
|
|
70 |
hold on |
|
|
71 |
plot(model11_x_axis, model11_y_axis, 'linewidth', 1.2, 'color', 'k'); |
|
|
72 |
hold on |
|
|
73 |
plot(model12_x_axis, model12_y_axis, 'linewidth', 1.2, 'color', color(12, :)); |
|
|
74 |
hold on |
|
|
75 |
|
|
|
76 |
grid on |
|
|
77 |
|
|
|
78 |
xlim([0, 310]) |
|
|
79 |
|
|
|
80 |
title({'Loss w.r.t. RNN-based Models'}, 'FontName', 'Times New Roman', 'FontSize', 16, 'FontWeight', 'bold') |
|
|
81 |
xlabel('Iterations') |
|
|
82 |
ylabel('Loss Value') |
|
|
83 |
set(gca, 'FontName', 'Times New Roman', 'FontSize', 16, 'FontWeight', 'bold'); |
|
|
84 |
|
|
|
85 |
legend('RNN', 'BiRNN', 'RNN with Attention', 'BiRNN with Attention', ... |
|
|
86 |
'LSTM', 'BiLSTM', 'LSTM with Attention', 'BiLSTM with Attention', ... |
|
|
87 |
'GRU', 'BiGRU', 'GRU with Attention', 'BiGRU with Attention', ... |
|
|
88 |
'location', 'EastOutside', 'FontName', 'Times New Roman', 'FontSize', 16) |
|
|
89 |
legend('boxoff') |
|
|
90 |
|
|
|
91 |
print('Loss_RNN_basedModels', '-dpng', '-r600') |
|
|
92 |
|