|
a |
|
b/Draw_Photos/Draw_Box_Photo.m |
|
|
1 |
clear all |
|
|
2 |
clc |
|
|
3 |
|
|
|
4 |
format long |
|
|
5 |
|
|
|
6 |
model1_acc = readmatrix("Model-20-1/run-.-tag-Global_Average_Accuracy_numpy.csv"); |
|
|
7 |
model2_acc = readmatrix("Model-20-2/run-.-tag-Global_Average_Accuracy_numpy.csv"); |
|
|
8 |
model3_acc = readmatrix("Model-20-3/run-.-tag-Global_Average_Accuracy_numpy.csv"); |
|
|
9 |
model4_acc = readmatrix("Model-20-4/run-.-tag-Global_Average_Accuracy_numpy.csv"); |
|
|
10 |
model5_acc = readmatrix("Model-20-5/run-.-tag-Global_Average_Accuracy_numpy.csv"); |
|
|
11 |
model6_acc = readmatrix("Model-20-6/run-.-tag-Global_Average_Accuracy_numpy.csv"); |
|
|
12 |
model7_acc = readmatrix("Model-20-7/run-.-tag-Global_Average_Accuracy_numpy.csv"); |
|
|
13 |
model8_acc = readmatrix("Model-20-8/run-.-tag-Global_Average_Accuracy_numpy.csv"); |
|
|
14 |
model9_acc = readmatrix("Model-20-9/run-.-tag-Global_Average_Accuracy_numpy.csv"); |
|
|
15 |
model10_acc = readmatrix("Model-20-10/run-.-tag-Global_Average_Accuracy_numpy.csv"); |
|
|
16 |
|
|
|
17 |
model1_Kappa = readmatrix("Model-20-1/run-.-tag-Kappa_Metric_numpy.csv"); |
|
|
18 |
model2_Kappa = readmatrix("Model-20-2/run-.-tag-Kappa_Metric_numpy.csv"); |
|
|
19 |
model3_Kappa = readmatrix("Model-20-3/run-.-tag-Kappa_Metric_numpy.csv"); |
|
|
20 |
model4_Kappa = readmatrix("Model-20-4/run-.-tag-Kappa_Metric_numpy.csv"); |
|
|
21 |
model5_Kappa = readmatrix("Model-20-5/run-.-tag-Kappa_Metric_numpy.csv"); |
|
|
22 |
model6_Kappa = readmatrix("Model-20-6/run-.-tag-Kappa_Metric_numpy.csv"); |
|
|
23 |
model7_Kappa = readmatrix("Model-20-7/run-.-tag-Kappa_Metric_numpy.csv"); |
|
|
24 |
model8_Kappa = readmatrix("Model-20-8/run-.-tag-Kappa_Metric_numpy.csv"); |
|
|
25 |
model9_Kappa = readmatrix("Model-20-9/run-.-tag-Kappa_Metric_numpy.csv"); |
|
|
26 |
model10_Kappa = readmatrix("Model-20-10/run-.-tag-Kappa_Metric_numpy.csv"); |
|
|
27 |
|
|
|
28 |
model1_precision = readmatrix("Model-20-1/run-.-tag-Macro_Global_Precision_numpy.csv"); |
|
|
29 |
model2_precision = readmatrix("Model-20-2/run-.-tag-Macro_Global_Precision_numpy.csv"); |
|
|
30 |
model3_precision = readmatrix("Model-20-3/run-.-tag-Macro_Global_Precision_numpy.csv"); |
|
|
31 |
model4_precision = readmatrix("Model-20-4/run-.-tag-Macro_Global_Precision_numpy.csv"); |
|
|
32 |
model5_precision = readmatrix("Model-20-5/run-.-tag-Macro_Global_Precision_numpy.csv"); |
|
|
33 |
model6_precision = readmatrix("Model-20-6/run-.-tag-Macro_Global_Precision_numpy.csv"); |
|
|
34 |
model7_precision = readmatrix("Model-20-7/run-.-tag-Macro_Global_Precision_numpy.csv"); |
|
|
35 |
model8_precision = readmatrix("Model-20-8/run-.-tag-Macro_Global_Precision_numpy.csv"); |
|
|
36 |
model9_precision = readmatrix("Model-20-9/run-.-tag-Macro_Global_Precision_numpy.csv"); |
|
|
37 |
model10_precision = readmatrix("Model-20-10/run-.-tag-Macro_Global_Precision_numpy.csv"); |
|
|
38 |
|
|
|
39 |
model1_recall = readmatrix("Model-20-1/run-.-tag-Macro_Global_Recall_numpy.csv"); |
|
|
40 |
model2_recall = readmatrix("Model-20-2/run-.-tag-Macro_Global_Recall_numpy.csv"); |
|
|
41 |
model3_recall = readmatrix("Model-20-3/run-.-tag-Macro_Global_Recall_numpy.csv"); |
|
|
42 |
model4_recall = readmatrix("Model-20-4/run-.-tag-Macro_Global_Recall_numpy.csv"); |
|
|
43 |
model5_recall = readmatrix("Model-20-5/run-.-tag-Macro_Global_Recall_numpy.csv"); |
|
|
44 |
model6_recall = readmatrix("Model-20-6/run-.-tag-Macro_Global_Recall_numpy.csv"); |
|
|
45 |
model7_recall = readmatrix("Model-20-7/run-.-tag-Macro_Global_Recall_numpy.csv"); |
|
|
46 |
model8_recall = readmatrix("Model-20-8/run-.-tag-Macro_Global_Recall_numpy.csv"); |
|
|
47 |
model9_recall = readmatrix("Model-20-9/run-.-tag-Macro_Global_Recall_numpy.csv"); |
|
|
48 |
model10_recall = readmatrix("Model-20-10/run-.-tag-Macro_Global_Recall_numpy.csv"); |
|
|
49 |
|
|
|
50 |
model1_f1 = readmatrix("Model-20-1/run-.-tag-Macro_Global_F1_Score_numpy.csv"); |
|
|
51 |
model2_f1 = readmatrix("Model-20-2/run-.-tag-Macro_Global_F1_Score_numpy.csv"); |
|
|
52 |
model3_f1 = readmatrix("Model-20-3/run-.-tag-Macro_Global_F1_Score_numpy.csv"); |
|
|
53 |
model4_f1 = readmatrix("Model-20-4/run-.-tag-Macro_Global_F1_Score_numpy.csv"); |
|
|
54 |
model5_f1 = readmatrix("Model-20-5/run-.-tag-Macro_Global_F1_Score_numpy.csv"); |
|
|
55 |
model6_f1 = readmatrix("Model-20-6/run-.-tag-Macro_Global_F1_Score_numpy.csv"); |
|
|
56 |
model7_f1 = readmatrix("Model-20-7/run-.-tag-Macro_Global_F1_Score_numpy.csv"); |
|
|
57 |
model8_f1 = readmatrix("Model-20-8/run-.-tag-Macro_Global_F1_Score_numpy.csv"); |
|
|
58 |
model9_f1 = readmatrix("Model-20-9/run-.-tag-Macro_Global_F1_Score_numpy.csv"); |
|
|
59 |
model10_f1 = readmatrix("Model-20-10/run-.-tag-Macro_Global_F1_Score_numpy.csv"); |
|
|
60 |
|
|
|
61 |
model1_acc = model1_acc(end, 3); |
|
|
62 |
model2_acc = model2_acc(end, 3); |
|
|
63 |
model3_acc = model3_acc(end, 3); |
|
|
64 |
model4_acc = model4_acc(end, 3); |
|
|
65 |
model5_acc = model5_acc(end, 3); |
|
|
66 |
model6_acc = model6_acc(end, 3); |
|
|
67 |
model7_acc = model7_acc(end, 3); |
|
|
68 |
model8_acc = model8_acc(end, 3); |
|
|
69 |
model9_acc = model9_acc(end, 3); |
|
|
70 |
model10_acc = model10_acc(end, 3); |
|
|
71 |
|
|
|
72 |
model1_Kappa = model1_Kappa(end, 3); |
|
|
73 |
model2_Kappa = model2_Kappa(end, 3); |
|
|
74 |
model3_Kappa = model3_Kappa(end, 3); |
|
|
75 |
model4_Kappa = model4_Kappa(end, 3); |
|
|
76 |
model5_Kappa = model5_Kappa(end, 3); |
|
|
77 |
model6_Kappa = model6_Kappa(end, 3); |
|
|
78 |
model7_Kappa = model7_Kappa(end, 3); |
|
|
79 |
model8_Kappa = model8_Kappa(end, 3); |
|
|
80 |
model9_Kappa = model9_Kappa(end, 3); |
|
|
81 |
model10_Kappa = model10_Kappa(end, 3); |
|
|
82 |
|
|
|
83 |
model1_precision = model1_precision(end, 3); |
|
|
84 |
model2_precision = model2_precision(end, 3); |
|
|
85 |
model3_precision = model3_precision(end, 3); |
|
|
86 |
model4_precision = model4_precision(end, 3); |
|
|
87 |
model5_precision = model5_precision(end, 3); |
|
|
88 |
model6_precision = model6_precision(end, 3); |
|
|
89 |
model7_precision = model7_precision(end, 3); |
|
|
90 |
model8_precision = model8_precision(end, 3); |
|
|
91 |
model9_precision = model9_precision(end, 3); |
|
|
92 |
model10_precision = model10_precision(end, 3); |
|
|
93 |
|
|
|
94 |
model1_recall = model1_recall(end, 3); |
|
|
95 |
model2_recall = model2_recall(end, 3); |
|
|
96 |
model3_recall = model3_recall(end, 3); |
|
|
97 |
model4_recall = model4_recall(end, 3); |
|
|
98 |
model5_recall = model5_recall(end, 3); |
|
|
99 |
model6_recall = model6_recall(end, 3); |
|
|
100 |
model7_recall = model7_recall(end, 3); |
|
|
101 |
model8_recall = model8_recall(end, 3); |
|
|
102 |
model9_recall = model9_recall(end, 3); |
|
|
103 |
model10_recall = model10_recall(end, 3); |
|
|
104 |
|
|
|
105 |
model1_f1 = model1_f1(end, 3); |
|
|
106 |
model2_f1 = model2_f1(end, 3); |
|
|
107 |
model3_f1 = model3_f1(end, 3); |
|
|
108 |
model4_f1 = model4_f1(end, 3); |
|
|
109 |
model5_f1 = model5_f1(end, 3); |
|
|
110 |
model6_f1 = model6_f1(end, 3); |
|
|
111 |
model7_f1 = model7_f1(end, 3); |
|
|
112 |
model8_f1 = model8_f1(end, 3); |
|
|
113 |
model9_f1 = model9_f1(end, 3); |
|
|
114 |
model10_f1 = model10_f1(end, 3); |
|
|
115 |
|
|
|
116 |
model_acc = [model1_acc, model2_acc, model3_acc, model4_acc, model5_acc, ... |
|
|
117 |
model6_acc, model7_acc, model8_acc, model9_acc, model10_acc]; |
|
|
118 |
model_Kappa = [model1_Kappa, model2_Kappa, model3_Kappa, model4_Kappa, model5_Kappa, ... |
|
|
119 |
model6_Kappa, model7_Kappa, model8_Kappa, model9_Kappa, model10_Kappa]; |
|
|
120 |
model_precision = [model1_precision, model2_precision, model3_precision, model4_precision, model5_precision, ... |
|
|
121 |
model6_precision, model7_precision, model8_precision, model9_precision, model10_precision]; |
|
|
122 |
model_recall = [model1_recall, model2_recall, model3_recall, model4_recall, model5_recall, ... |
|
|
123 |
model6_recall, model7_recall, model8_recall, model9_recall, model10_recall]; |
|
|
124 |
model_f1 = [model1_f1, model2_f1, model3_f1, model4_f1, model5_f1, ... |
|
|
125 |
model6_f1, model7_f1, model8_f1, model9_f1, model10_f1]; |
|
|
126 |
|
|
|
127 |
% Number of intended boxes in the figure |
|
|
128 |
num_boxes = 5; |
|
|
129 |
|
|
|
130 |
% Generating random data |
|
|
131 |
data = cell(1, num_boxes); |
|
|
132 |
data{1} = model_acc; |
|
|
133 |
data{2} = model_Kappa; |
|
|
134 |
data{3} = model_precision; |
|
|
135 |
data{4} = model_recall; |
|
|
136 |
data{5} = model_f1; |
|
|
137 |
|
|
|
138 |
% Using the "figure_boxplot.m" function to plot the boxplot figure using the data, |
|
|
139 |
label_axes = {'Evaluation Metrics', 'Percentage'}; |
|
|
140 |
label_boxes = {'GAA', 'Kappa', 'Precision', 'Recall', 'F1 Score'}; |
|
|
141 |
figure_boxplot(data, label_axes, label_boxes, '.'); |
|
|
142 |
grid on |
|
|
143 |
|
|
|
144 |
title({'Box Plot for 10-fold Cross-validation'}, 'FontName', 'Times New Roman', 'FontSize', 16, 'FontWeight', 'bold') |
|
|
145 |
set(gca, 'FontName', 'Times New Roman', 'FontSize', 16, 'FontWeight', 'bold'); |
|
|
146 |
box on |
|
|
147 |
|
|
|
148 |
print('box_cross_validation', '-dpng', '-r600') |
|
|
149 |
|
|
|
150 |
|
|
|
151 |
|
|
|
152 |
|
|
|
153 |
|
|
|
154 |
|
|
|
155 |
|
|
|
156 |
|
|
|
157 |
|
|
|
158 |
|
|
|
159 |
|