"""
EEG Conformer
Convolutional Transformer for EEG decoding
Couple CNN and Transformer in a concise manner with amazing results
"""
# remember to change paths
import argparse
import os
gpus = [0]
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, gpus))
import numpy as np
import math
import glob
import random
import itertools
import datetime
import time
import datetime
import sys
import scipy.io
import torchvision.transforms as transforms
from torchvision.utils import save_image, make_grid
from torch.utils.data import DataLoader
from torch.autograd import Variable
from torchsummary import summary
import torch.autograd as autograd
from torchvision.models import vgg19
import torch.nn as nn
import torch.nn.functional as F
import torch
import torch.nn.init as init
from torch.utils.data import Dataset
from PIL import Image
import torchvision.transforms as transforms
from sklearn.decomposition import PCA
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch import nn
from torch import Tensor
from PIL import Image
from torchvision.transforms import Compose, Resize, ToTensor
from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange, Reduce
# from common_spatial_pattern import csp
import matplotlib.pyplot as plt
# from torch.utils.tensorboard import SummaryWriter
from torch.backends import cudnn
cudnn.benchmark = False
cudnn.deterministic = True
# writer = SummaryWriter('./TensorBoardX/')
# Convolution module
# use conv to capture local features, instead of postion embedding.
class PatchEmbedding(nn.Module):
def __init__(self, emb_size=40):
# self.patch_size = patch_size
super().__init__()
self.shallownet = nn.Sequential(
nn.Conv2d(1, 40, (1, 25), (1, 1)),
nn.Conv2d(40, 40, (22, 1), (1, 1)),
nn.BatchNorm2d(40),
nn.ELU(),
nn.AvgPool2d((1, 75), (1, 15)), # pooling acts as slicing to obtain 'patch' along the time dimension as in ViT
nn.Dropout(0.5),
)
self.projection = nn.Sequential(
nn.Conv2d(40, emb_size, (1, 1), stride=(1, 1)), # transpose, conv could enhance fiting ability slightly
Rearrange('b e (h) (w) -> b (h w) e'),
)
def forward(self, x: Tensor) -> Tensor:
b, _, _, _ = x.shape
x = self.shallownet(x)
x = self.projection(x)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, emb_size, num_heads, dropout):
super().__init__()
self.emb_size = emb_size
self.num_heads = num_heads
self.keys = nn.Linear(emb_size, emb_size)
self.queries = nn.Linear(emb_size, emb_size)
self.values = nn.Linear(emb_size, emb_size)
self.att_drop = nn.Dropout(dropout)
self.projection = nn.Linear(emb_size, emb_size)
def forward(self, x: Tensor, mask: Tensor = None) -> Tensor:
queries = rearrange(self.queries(x), "b n (h d) -> b h n d", h=self.num_heads)
keys = rearrange(self.keys(x), "b n (h d) -> b h n d", h=self.num_heads)
values = rearrange(self.values(x), "b n (h d) -> b h n d", h=self.num_heads)
energy = torch.einsum('bhqd, bhkd -> bhqk', queries, keys)
if mask is not None:
fill_value = torch.finfo(torch.float32).min
energy.mask_fill(~mask, fill_value)
scaling = self.emb_size ** (1 / 2)
att = F.softmax(energy / scaling, dim=-1)
att = self.att_drop(att)
out = torch.einsum('bhal, bhlv -> bhav ', att, values)
out = rearrange(out, "b h n d -> b n (h d)")
out = self.projection(out)
return out
class ResidualAdd(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
res = x
x = self.fn(x, **kwargs)
x += res
return x
class FeedForwardBlock(nn.Sequential):
def __init__(self, emb_size, expansion, drop_p):
super().__init__(
nn.Linear(emb_size, expansion * emb_size),
nn.GELU(),
nn.Dropout(drop_p),
nn.Linear(expansion * emb_size, emb_size),
)
class GELU(nn.Module):
def forward(self, input: Tensor) -> Tensor:
return input*0.5*(1.0+torch.erf(input/math.sqrt(2.0)))
class TransformerEncoderBlock(nn.Sequential):
def __init__(self,
emb_size,
num_heads=10,
drop_p=0.5,
forward_expansion=4,
forward_drop_p=0.5):
super().__init__(
ResidualAdd(nn.Sequential(
nn.LayerNorm(emb_size),
MultiHeadAttention(emb_size, num_heads, drop_p),
nn.Dropout(drop_p)
)),
ResidualAdd(nn.Sequential(
nn.LayerNorm(emb_size),
FeedForwardBlock(
emb_size, expansion=forward_expansion, drop_p=forward_drop_p),
nn.Dropout(drop_p)
)
))
class TransformerEncoder(nn.Sequential):
def __init__(self, depth, emb_size):
super().__init__(*[TransformerEncoderBlock(emb_size) for _ in range(depth)])
class ClassificationHead(nn.Sequential):
def __init__(self, emb_size, n_classes):
super().__init__()
# global average pooling
self.clshead = nn.Sequential(
Reduce('b n e -> b e', reduction='mean'),
nn.LayerNorm(emb_size),
nn.Linear(emb_size, n_classes)
)
self.fc = nn.Sequential(
nn.Linear(2440, 256),
nn.ELU(),
nn.Dropout(0.5),
nn.Linear(256, 32),
nn.ELU(),
nn.Dropout(0.3),
nn.Linear(32, 4)
)
def forward(self, x):
x = x.contiguous().view(x.size(0), -1)
out = self.fc(x)
return x, out
class Conformer(nn.Sequential):
def __init__(self, emb_size=40, depth=6, n_classes=4, **kwargs):
super().__init__(
PatchEmbedding(emb_size),
TransformerEncoder(depth, emb_size),
ClassificationHead(emb_size, n_classes)
)
class ExP():
def __init__(self, nsub):
super(ExP, self).__init__()
self.batch_size = 72
self.n_epochs = 2000
self.c_dim = 4
self.lr = 0.0002
self.b1 = 0.5
self.b2 = 0.999
self.dimension = (190, 50)
self.nSub = nsub
self.start_epoch = 0
self.root = '/Data/strict_TE/'
self.log_write = open("./results/log_subject%d.txt" % self.nSub, "w")
self.Tensor = torch.cuda.FloatTensor
self.LongTensor = torch.cuda.LongTensor
self.criterion_l1 = torch.nn.L1Loss().cuda()
self.criterion_l2 = torch.nn.MSELoss().cuda()
self.criterion_cls = torch.nn.CrossEntropyLoss().cuda()
self.model = Conformer().cuda()
self.model = nn.DataParallel(self.model, device_ids=[i for i in range(len(gpus))])
self.model = self.model.cuda()
# summary(self.model, (1, 22, 1000))
# Segmentation and Reconstruction (S&R) data augmentation
def interaug(self, timg, label):
aug_data = []
aug_label = []
for cls4aug in range(4):
cls_idx = np.where(label == cls4aug + 1)
tmp_data = timg[cls_idx]
tmp_label = label[cls_idx]
tmp_aug_data = np.zeros((int(self.batch_size / 4), 1, 22, 1000))
for ri in range(int(self.batch_size / 4)):
for rj in range(8):
rand_idx = np.random.randint(0, tmp_data.shape[0], 8)
tmp_aug_data[ri, :, :, rj * 125:(rj + 1) * 125] = tmp_data[rand_idx[rj], :, :,
rj * 125:(rj + 1) * 125]
aug_data.append(tmp_aug_data)
aug_label.append(tmp_label[:int(self.batch_size / 4)])
aug_data = np.concatenate(aug_data)
aug_label = np.concatenate(aug_label)
aug_shuffle = np.random.permutation(len(aug_data))
aug_data = aug_data[aug_shuffle, :, :]
aug_label = aug_label[aug_shuffle]
aug_data = torch.from_numpy(aug_data).cuda()
aug_data = aug_data.float()
aug_label = torch.from_numpy(aug_label-1).cuda()
aug_label = aug_label.long()
return aug_data, aug_label
def get_source_data(self):
# ! please please recheck if you need validation set
# ! and the data segement compared methods used
# train data
self.total_data = scipy.io.loadmat(self.root + 'A0%dT.mat' % self.nSub)
self.train_data = self.total_data['data']
self.train_label = self.total_data['label']
self.train_data = np.transpose(self.train_data, (2, 1, 0))
self.train_data = np.expand_dims(self.train_data, axis=1)
self.train_label = np.transpose(self.train_label)
self.allData = self.train_data
self.allLabel = self.train_label[0]
shuffle_num = np.random.permutation(len(self.allData))
self.allData = self.allData[shuffle_num, :, :, :]
self.allLabel = self.allLabel[shuffle_num]
# test data
self.test_tmp = scipy.io.loadmat(self.root + 'A0%dE.mat' % self.nSub)
self.test_data = self.test_tmp['data']
self.test_label = self.test_tmp['label']
self.test_data = np.transpose(self.test_data, (2, 1, 0))
self.test_data = np.expand_dims(self.test_data, axis=1)
self.test_label = np.transpose(self.test_label)
self.testData = self.test_data
self.testLabel = self.test_label[0]
# standardize
target_mean = np.mean(self.allData)
target_std = np.std(self.allData)
self.allData = (self.allData - target_mean) / target_std
self.testData = (self.testData - target_mean) / target_std
# data shape: (trial, conv channel, electrode channel, time samples)
return self.allData, self.allLabel, self.testData, self.testLabel
def train(self):
img, label, test_data, test_label = self.get_source_data()
img = torch.from_numpy(img)
label = torch.from_numpy(label - 1)
dataset = torch.utils.data.TensorDataset(img, label)
self.dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=self.batch_size, shuffle=True)
test_data = torch.from_numpy(test_data)
test_label = torch.from_numpy(test_label - 1)
test_dataset = torch.utils.data.TensorDataset(test_data, test_label)
self.test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=self.batch_size, shuffle=True)
# Optimizers
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, betas=(self.b1, self.b2))
test_data = Variable(test_data.type(self.Tensor))
test_label = Variable(test_label.type(self.LongTensor))
bestAcc = 0
averAcc = 0
num = 0
Y_true = 0
Y_pred = 0
# Train the cnn model
total_step = len(self.dataloader)
curr_lr = self.lr
for e in range(self.n_epochs):
# in_epoch = time.time()
self.model.train()
for i, (img, label) in enumerate(self.dataloader):
img = Variable(img.cuda().type(self.Tensor))
label = Variable(label.cuda().type(self.LongTensor))
# data augmentation
aug_data, aug_label = self.interaug(self.allData, self.allLabel)
img = torch.cat((img, aug_data))
label = torch.cat((label, aug_label))
tok, outputs = self.model(img)
loss = self.criterion_cls(outputs, label)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# out_epoch = time.time()
# test process
if (e + 1) % 1 == 0:
self.model.eval()
Tok, Cls = self.model(test_data)
loss_test = self.criterion_cls(Cls, test_label)
y_pred = torch.max(Cls, 1)[1]
acc = float((y_pred == test_label).cpu().numpy().astype(int).sum()) / float(test_label.size(0))
train_pred = torch.max(outputs, 1)[1]
train_acc = float((train_pred == label).cpu().numpy().astype(int).sum()) / float(label.size(0))
print('Epoch:', e,
' Train loss: %.6f' % loss.detach().cpu().numpy(),
' Test loss: %.6f' % loss_test.detach().cpu().numpy(),
' Train accuracy %.6f' % train_acc,
' Test accuracy is %.6f' % acc)
self.log_write.write(str(e) + " " + str(acc) + "\n")
num = num + 1
averAcc = averAcc + acc
if acc > bestAcc:
bestAcc = acc
Y_true = test_label
Y_pred = y_pred
torch.save(self.model.module.state_dict(), 'model.pth')
averAcc = averAcc / num
print('The average accuracy is:', averAcc)
print('The best accuracy is:', bestAcc)
self.log_write.write('The average accuracy is: ' + str(averAcc) + "\n")
self.log_write.write('The best accuracy is: ' + str(bestAcc) + "\n")
return bestAcc, averAcc, Y_true, Y_pred
# writer.close()
def main():
best = 0
aver = 0
result_write = open("./results/sub_result.txt", "w")
for i in range(9):
starttime = datetime.datetime.now()
seed_n = np.random.randint(2021)
print('seed is ' + str(seed_n))
random.seed(seed_n)
np.random.seed(seed_n)
torch.manual_seed(seed_n)
torch.cuda.manual_seed(seed_n)
torch.cuda.manual_seed_all(seed_n)
print('Subject %d' % (i+1))
exp = ExP(i + 1)
bestAcc, averAcc, Y_true, Y_pred = exp.train()
print('THE BEST ACCURACY IS ' + str(bestAcc))
result_write.write('Subject ' + str(i + 1) + ' : ' + 'Seed is: ' + str(seed_n) + "\n")
result_write.write('Subject ' + str(i + 1) + ' : ' + 'The best accuracy is: ' + str(bestAcc) + "\n")
result_write.write('Subject ' + str(i + 1) + ' : ' + 'The average accuracy is: ' + str(averAcc) + "\n")
endtime = datetime.datetime.now()
print('subject %d duration: '%(i+1) + str(endtime - starttime))
best = best + bestAcc
aver = aver + averAcc
if i == 0:
yt = Y_true
yp = Y_pred
else:
yt = torch.cat((yt, Y_true))
yp = torch.cat((yp, Y_pred))
best = best / 9
aver = aver / 9
result_write.write('**The average Best accuracy is: ' + str(best) + "\n")
result_write.write('The average Aver accuracy is: ' + str(aver) + "\n")
result_write.close()
if __name__ == "__main__":
print(time.asctime(time.localtime(time.time())))
main()
print(time.asctime(time.localtime(time.time())))