"""
EEG conformer
Test SEED data 1 second
perform strict 5-fold cross validation
"""
import argparse
import os
gpus = [1]
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(map(str, gpus))
import numpy as np
import math
import glob
import random
import itertools
import datetime
import time
import datetime
import sys
import scipy.io
import torchvision.transforms as transforms
from torchvision.utils import save_image, make_grid
from torch.utils.data import DataLoader
from torch.autograd import Variable
from torchsummary import summary
import torch.autograd as autograd
from torchvision.models import vgg19
import torch.nn as nn
import torch.nn.functional as F
import torch
import torch.nn.init as init
from torch.utils.data import Dataset
from PIL import Image
import torchvision.transforms as transforms
from sklearn.decomposition import PCA
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch import nn
from torch import Tensor
from PIL import Image
from torchvision.transforms import Compose, Resize, ToTensor
from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange, Reduce
import matplotlib.pyplot as plt
# from torch.utils.tensorboard import SummaryWriter
from torch.backends import cudnn
cudnn.benchmark = False
cudnn.deterministic = True
class PatchEmbedding(nn.Module):
def __init__(self, emb_size=40):
super().__init__()
self.eegnet = nn.Sequential(
nn.Conv2d(1, 8, (1, 125), (1, 1)),
nn.BatchNorm2d(8),
nn.Conv2d(8, 16, (22, 1), (1, 1)),
nn.BatchNorm2d(16),
nn.ELU(),
nn.AvgPool2d((1, 4), (1, 4)),
nn.Dropout(0.5),
nn.Conv2d(16, 16, (1, 16), (1, 1)),
nn.BatchNorm2d(16),
nn.ELU(),
nn.AvgPool2d((1, 8), (1, 8)),
nn.Dropout2d(0.5)
)
self.shallownet = nn.Sequential(
nn.Conv2d(1, 40, (1, 25), (1, 1)),
nn.Conv2d(40, 40, (62, 1), (1, 1)),
nn.BatchNorm2d(40),
nn.ELU(),
nn.AvgPool2d((1, 75), (1, 15)),
nn.Dropout(0.5),
)
self.projection = nn.Sequential(
nn.Conv2d(40, emb_size, (1, 1), stride=(1, 1)), # 5 is better than 1
Rearrange('b e (h) (w) -> b (h w) e'),
)
def forward(self, x: Tensor) -> Tensor:
b, _, _, _ = x.shape
x = self.shallownet(x)
x = self.projection(x)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, emb_size, num_heads, dropout):
super().__init__()
self.emb_size = emb_size
self.num_heads = num_heads
self.keys = nn.Linear(emb_size, emb_size)
self.queries = nn.Linear(emb_size, emb_size)
self.values = nn.Linear(emb_size, emb_size)
self.att_drop = nn.Dropout(dropout)
self.projection = nn.Linear(emb_size, emb_size)
def forward(self, x: Tensor, mask: Tensor = None) -> Tensor:
queries = rearrange(self.queries(x), "b n (h d) -> b h n d", h=self.num_heads)
keys = rearrange(self.keys(x), "b n (h d) -> b h n d", h=self.num_heads)
values = rearrange(self.values(x), "b n (h d) -> b h n d", h=self.num_heads)
energy = torch.einsum('bhqd, bhkd -> bhqk', queries, keys) # batch, num_heads, query_len, key_len
if mask is not None:
fill_value = torch.finfo(torch.float32).min
energy.mask_fill(~mask, fill_value)
scaling = self.emb_size ** (1 / 2)
att = F.softmax(energy / scaling, dim=-1)
att = self.att_drop(att)
out = torch.einsum('bhal, bhlv -> bhav ', att, values)
out = rearrange(out, "b h n d -> b n (h d)")
out = self.projection(out)
return out
class ResidualAdd(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
res = x
x = self.fn(x, **kwargs)
x += res
return x
class FeedForwardBlock(nn.Sequential):
def __init__(self, emb_size, expansion, drop_p):
super().__init__(
nn.Linear(emb_size, expansion * emb_size),
nn.GELU(),
nn.Dropout(drop_p),
nn.Linear(expansion * emb_size, emb_size),
)
class GELU(nn.Module):
def forward(self, input: Tensor) -> Tensor:
return input*0.5*(1.0+torch.erf(input/math.sqrt(2.0)))
class TransformerEncoderBlock(nn.Sequential):
def __init__(self,
emb_size,
num_heads=5,
drop_p=0.5,
forward_expansion=4,
forward_drop_p=0.5):
super().__init__(
ResidualAdd(nn.Sequential(
nn.LayerNorm(emb_size),
MultiHeadAttention(emb_size, num_heads, drop_p),
nn.Dropout(drop_p)
)),
ResidualAdd(nn.Sequential(
nn.LayerNorm(emb_size),
FeedForwardBlock(
emb_size, expansion=forward_expansion, drop_p=forward_drop_p),
nn.Dropout(drop_p)
)
))
class TransformerEncoder(nn.Sequential):
def __init__(self, depth, emb_size):
super().__init__(*[TransformerEncoderBlock(emb_size) for _ in range(depth)])
class ClassificationHead(nn.Sequential):
def __init__(self, emb_size, n_classes):
super().__init__()
self.cov = nn.Sequential(
nn.Conv1d(190, 1, 1, 1),
nn.LeakyReLU(0.2),
nn.Dropout(0.5)
)
self.clshead = nn.Sequential(
Reduce('b n e -> b e', reduction='mean'),
nn.LayerNorm(emb_size),
nn.Linear(emb_size, n_classes)
)
self.clshead_fc = nn.Sequential(
Reduce('b n e -> b e', reduction='mean'),
nn.LayerNorm(emb_size),
nn.Linear(emb_size, 32),
nn.ELU(),
nn.Dropout(0.5),
nn.Linear(32, n_classes)
)
self.fc = nn.Sequential(
nn.Linear(280, 32),
nn.ELU(),
nn.Dropout(0.3),
nn.Linear(32, 3)
)
def forward(self, x):
x = x.contiguous().view(x.size(0), -1)
out = self.fc(x)
return x, out
# ! Rethink the use of Transformer for EEG signal
class ViT(nn.Sequential):
def __init__(self, emb_size=40, depth=6, n_classes=4, **kwargs):
super().__init__(
PatchEmbedding(emb_size),
TransformerEncoder(depth, emb_size),
ClassificationHead(emb_size, n_classes)
)
class ExGAN():
def __init__(self, nsub, fold):
super(ExGAN, self).__init__()
self.batch_size = 200
self.n_epochs = 600 #1000
self.img_height = 22
self.img_width = 600
self.channels = 1
self.c_dim = 4
self.lr = 0.0002
self.b1 = 0.5
self.b2 = 0.999
self.alpha = 0.0002
self.dimension = (190, 50)
self.nSub = nsub
self.start_epoch = 0
self.root = '/Data/SEED/seed_syh/data_cv5fold/'
self.pretrain = False
self.log_write = open("/Code/CT/results/D_base_comp/seed/5-fold/real/log_subject%d_fold%d.txt" % (self.nSub, fold+1), "w")
self.img_shape = (self.channels, self.img_height, self.img_width)
self.Tensor = torch.cuda.FloatTensor
self.LongTensor = torch.cuda.LongTensor
self.criterion_l1 = torch.nn.L1Loss().cuda()
self.criterion_l2 = torch.nn.MSELoss().cuda()
self.criterion_cls = torch.nn.CrossEntropyLoss().cuda()
self.model = ViT().cuda()
self.model = nn.DataParallel(self.model, device_ids=[i for i in range(len(gpus))])
self.model = self.model.cuda()
self.centers = {}
def interaug(self, timg, label):
aug_data = []
aug_label = []
for cls4aug in range(3):
cls_idx = np.where(label == cls4aug)
tmp_data = timg[cls_idx]
tmp_label = label[cls_idx]
tmp_aug_data = np.zeros((int(self.batch_size / 3), 1, 62, 200))
for ri in range(int(self.batch_size / 3)):
for rj in range(8):
rand_idx = np.random.randint(0, tmp_data.shape[0], 8)
tmp_aug_data[ri, :, :, rj * 25:(rj + 1) * 25] = tmp_data[rand_idx[rj], :, :,
rj * 25:(rj + 1) * 25]
aug_data.append(tmp_aug_data)
aug_label.append(tmp_label[:int(self.batch_size / 3)])
aug_data = np.concatenate(aug_data)
aug_label = np.concatenate(aug_label)
aug_shuffle = np.random.permutation(len(aug_data))
aug_data = aug_data[aug_shuffle, :, :]
aug_label = aug_label[aug_shuffle]
aug_data = torch.from_numpy(aug_data).cuda()
aug_data = aug_data.float()
aug_label = torch.from_numpy(aug_label).cuda()
aug_label = aug_label.long()
return aug_data, aug_label
def get_source_data(self, fold):
self.all_data = np.load(self.root + 'S%d_session1.npy' % self.nSub, allow_pickle=True)
self.all_label = np.load(self.root + 'S%d_session1_label.npy' % self.nSub, allow_pickle=True)
self.train_data = []
self.train_label = []
self.test_data = []
self.test_label = []
for tri in range(np.shape(self.all_data)[0]):
tmp_tri = np.array(self.all_data[tri])
tmp_tri_label = np.array(self.all_label[tri])
one_fold_num = np.shape(tmp_tri)[0] // 5
tri_num = one_fold_num * 5
tmp_tri_idx = np.arange(tri_num)
test_idx = np.arange(one_fold_num * fold, one_fold_num * (fold+1))
train_idx = np.delete(tmp_tri_idx, test_idx)
self.train_data.append(tmp_tri[train_idx])
self.train_label.append(tmp_tri_label[train_idx])
self.test_data.append(tmp_tri[test_idx])
self.test_label.append(tmp_tri_label[test_idx])
self.train_data = np.concatenate(self.train_data)
self.train_data = np.expand_dims(self.train_data, axis=1)
self.train_label = np.concatenate(self.train_label)
self.test_data = np.concatenate(self.test_data)
self.test_data = np.expand_dims(self.test_data, axis=1)
self.test_label = np.concatenate(self.test_label)
shuffle_num = np.random.permutation(len(self.train_data))
self.train_data = self.train_data[shuffle_num, :, :, :]
self.train_label = self.train_label[shuffle_num]
# standardize
target_mean = np.mean(self.train_data)
target_std = np.std(self.train_data)
self.train_data = (self.train_data - target_mean) / target_std
self.test_data = (self.test_data - target_mean) / target_std
return self.train_data, self.train_label, self.test_data, self.test_label
def update_lr(self, optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def aug(self, img, label):
aug_data = []
aug_label = []
for cls4aug in range(4):
cls_idx = np.where(label == cls4aug + 1)
tmp_data = img[cls_idx]
tmp_label = label[cls_idx]
tmp_aug_data = np.zeros(tmp_data.shape)
for ri in range(tmp_data.shape[0]):
for rj in range(8):
rand_idx = np.random.randint(0, tmp_data.shape[0], 8)
tmp_aug_data[ri, :, :, rj * 125:(rj + 1) * 125] = tmp_data[rand_idx[rj], :, :, rj * 125:(rj + 1) * 125]
aug_data.append(tmp_aug_data)
aug_label.append(tmp_label)
aug_data = np.concatenate(aug_data)
aug_label = np.concatenate(aug_label)
aug_shuffle = np.random.permutation(len(aug_data))
aug_data = aug_data[aug_shuffle, :, :]
aug_label = aug_label[aug_shuffle]
return aug_data, aug_label
def update_centers(self, feature, label):
deltac = {}
count = {}
count[0] = 0
for i in range(len(label)):
l = label[i]
if l in deltac:
deltac[l] += self.centers[l]-feature[i]
else:
deltac[l] = self.centers[l]-feature[i]
if l in count:
count[l] += 1
else:
count[l] = 1
for ke in deltac.keys():
deltac[ke] = deltac[ke]/(count[ke]+1)
return deltac
def train(self, fold):
img, label, test_data, test_label = self.get_source_data(fold)
img = torch.from_numpy(img)
label = torch.from_numpy(label + 1)
dataset = torch.utils.data.TensorDataset(img, label)
self.dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=self.batch_size, shuffle=True)
test_data = torch.from_numpy(test_data)
test_label = torch.from_numpy(test_label + 1)
test_dataset = torch.utils.data.TensorDataset(test_data, test_label)
self.test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=self.batch_size, shuffle=True)
for i in range(self.c_dim):
self.centers[i] = torch.randn(self.dimension)
self.centers[i] = self.centers[i].cuda()
# Optimizers
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, betas=(self.b1, self.b2))
test_data = Variable(test_data.type(self.Tensor))
test_label = Variable(test_label.type(self.LongTensor))
bestAcc = 0
averAcc = 0
num = 0
Y_true = 0
Y_pred = 0
# Train the cnn model
total_step = len(self.dataloader)
curr_lr = self.lr
for e in range(self.n_epochs):
in_epoch = time.time()
self.model.train()
for i, (img, label) in enumerate(self.dataloader):
img = Variable(img.cuda().type(self.Tensor))
# img = self.active_function(img)
label = Variable(label.cuda().type(self.LongTensor))
tok, outputs = self.model(img)
# Central loss
cen_feature = tok
cen_label = label
nplabela = cen_label.cpu().numpy()
loss = self.criterion_cls(outputs, label)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
out_epoch = time.time()
if (e + 1) % 1 == 0:
self.model.eval()
Tok, Cls = self.model(test_data)
loss_test = self.criterion_cls(Cls, test_label)
y_pred = torch.max(Cls, 1)[1]
acc = float((y_pred == test_label).cpu().numpy().astype(int).sum()) / float(test_label.size(0))
train_pred = torch.max(outputs, 1)[1]
train_acc = float((train_pred == label).cpu().numpy().astype(int).sum()) / float(label.size(0))
# print('The epoch is:', e, ' The accuracy is:', acc)
print('Epoch:', e,
' Train loss: %.4f' % loss.detach().cpu().numpy(),
' Test loss: %.4f' % loss_test.detach().cpu().numpy(),
' Train acc: %.4f' % train_acc,
' Test acc: %.4f' % acc)
self.log_write.write(str(e) + " " + str(acc) + "\n")
num = num + 1
averAcc = averAcc + acc
if acc > bestAcc:
bestAcc = acc
Y_true = test_label
Y_pred = y_pred
averAcc = averAcc / num
print('The average accuracy of fold%d is:' %(fold+1), averAcc)
print('The best accuracy of fold%d is:' %(fold+1), bestAcc)
self.log_write.write('The average accuracy of fold%d is: ' %(fold+1) + str(averAcc) + "\n")
self.log_write.write('The best accuracy fold%d is: ' %(fold+1) + str(bestAcc) + "\n")
return bestAcc, averAcc, Y_true, Y_pred
# writer.close()
def main():
best = 0
aver = 0
result_write = open("/Code/CT/results/seed/5-fold/sub_result.txt", "w")
for i in range(15):
starttime = datetime.datetime.now()
seed_n = np.random.randint(2021)
result_write.write('--------------------------------------------------')
# print('seed is ' + str(seed_n))
random.seed(seed_n)
np.random.seed(seed_n)
torch.manual_seed(seed_n)
torch.cuda.manual_seed(seed_n)
torch.cuda.manual_seed_all(seed_n)
print('Subject %d' % (i+1))
result_write.write('Subject ' + str(i + 1) + ' : ' + 'Seed is: ' + str(seed_n) + "\n")
ba = 0
aa = 0
bestAcc = 0
averAcc = 0
for fold in range(5):
exgan = ExGAN(i + 1, fold)
ba, aa, _, _ = exgan.train(fold)
# print('THE BEST ACCURACY IS ' + str(ba))
result_write.write('Best acc of fold' + str(fold+1) + 'is: ' + str(ba) + "\n")
result_write.write('Aver acc of fold' + str(fold+1) + 'is: ' + str(aa) + "\n")
bestAcc += ba
averAcc += aa
bestAcc /= 5
averAcc /= 5
result_write.write('5-fold Best acc is: ' + str(bestAcc) + "\n")
result_write.write('5-fold Aver acc is: ' + str(averAcc) + "\n")
# plot_confusion_matrix(Y_true, Y_pred, i+1)
best = best + bestAcc
aver = aver + averAcc
endtime = datetime.datetime.now()
print('subject %d duration: '%(i+1) + str(endtime - starttime))
best = best / 15
aver = aver / 15
result_write.write('--------------------------------------------------')
result_write.write('All subject Best accuracy is: ' + str(best) + "\n")
result_write.write('All subject Aver accuracy is: ' + str(aver) + "\n")
result_write.close()
if __name__ == "__main__":
print(time.asctime(time.localtime(time.time())))
main()
print(time.asctime(time.localtime(time.time())))