
• This study proposed a novel attention-based temporal convolutional network

(ATCNet) for EEG-based motor imagery classification that outperformed state-of-

the-art techniques in MI-EEG classification using the BCI-2a dataset with an accuracy

of 85.4% and 71% for the subject-dependent and subject-independent modes,

respectively. These high results came with a relatively small number of parameters

(115.2K), which makes ATCNet applicable to limited devices.

• The ablation analysis showed that each block in the ATCNet model made a

significant contribution to the performance of the ATCNet model.

• The proposed model demonstrated a powerful ability to extract MI features from a

raw EEG signal without pre-processing using a limited-size and challenging dataset.
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• The proposed ATCNet model achieves an overall accuracy of 85.38% and a κ-score of

0.81, using the challenging and benchmark BCI Competition IV-2a dataset, which

outperforms the state-of-the-art techniques by at least 2.51%.

• Ablation analysis showed that each block adds its contribution: the AT block

increased the overall accuracy by 1.54% and SW by 2.28%. The addition of the TC

block also increased accuracy by 1.04% compared to using the CV block only.

ResultsIntroduction

• The proposed model can be further improved by using attention mechanisms in

several domains, i.e., temporal, spectral, and spatial domains.

• The proposed model can also be refined using preprocessing methods to remove

artifacts and deep generative models to increase the size of the dataset.

Future work 

The goal is to develop a high-performance attention-based deep learning model to 

classify EEG-based MI brain signals, which outperform state-of-the-art models.

Aims

Proposed Method

Visualization of the components of the proposed ATCNet model. ATCNet consists of
three main blocks: the convolutional (CV) block, the multi-head self-attention (AT)
block, and the temporal convolutional (TC) block.

• The brain-computer interface (BCI) is

an emerging technology that has the

potential to transform the world, with

a wide range of applications ranging

from medical applications to human

augmentation. MI-EEG signal has been

used in many BCI applications to assist

disabled people and to augment human capabilities.

• Recognizing human intention from EEG signal is challenging

due to the low SNR ratio and various sources of artifacts, the

recorded EEG signal is only ~ 5% of the actual brain signal.

• EEG is a non-invasive, low cost, low risk, and portable

method that records the electrical activities of the brain.

Motor imagery (MI) is the activity of thinking about moving

a human body part without physically moving it.

The proposed model consists of three main blocks:

Convolutional (CV) block: encodes low-level spatio-

temporal information within the MI-EEG signal into a

sequence of high-level temporal representations

through three convolutional layers.

Attention (AT) block: highlights the most important

information in the temporal sequence using a multi-

head self-attention (MSA).

Temporal convolutional (TC) block: extracts high-

level temporal features from the highlighted

information using a temporal convolutional layer

The proposed model also utilizes the convolutional-based sliding window to

augment MI data and boost the performance of MI classification efficiently.
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Accuracy of MI-EEG classification

Removed block 
Accuracy 

% 
κ-score 

None (ATCNet) 85.38 0.805 

AT 83.84 0.784 

SW 83.10 0.775 

SW + AT 82.75 0.770 

TC 79.44 0.726 

SW + TC 80.48 0.740 

AT + TC 82.60 0.768 

SW + AT + TC 81.71 0.756 

Ablation analysis: contribution of each 
block in the ATCNet model. AT: 
attention, SW: sliding window, TC: 
temporal convolution.
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