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 

Abstract— The brain-computer interface (BCI) is a cutting-edge 
technology that has the potential to change the world. 
Electroencephalogram (EEG) motor imagery (MI) signal has been 
used extensively in many BCI applications to assist disabled 
people, control devices or environments, and even augment human 
capabilities. However, the limited performance of brain signal 
decoding is restricting the broad growth of the BCI industry. In 
this paper, we propose an attention-based temporal convolutional 
network (ATCNet) for EEG-based motor imagery classification. 
The ATCNet model utilizes multiple techniques to boost the 
performance of MI classification with a relatively small number of 
parameters. ATCNet employs scientific machine learning to 
design a domain-specific DL model with interpretable and 
explainable features, multi-head self-attention to highlight the 
most valuable features in MI-EEG data, temporal convolutional 
network (TCN) to extract high-level temporal features, and 
convolutional-based sliding window to augment the MI-EEG data 
efficiently. The proposed model outperforms the current state-of-
the-art techniques in the BCI Competition IV-2a dataset with an 
accuracy of 85.38% and 70.97% for the subject-dependent and 
subject-independent modes, respectively. 
 

Index Terms— Deep learning, convolution neural network 
(CNN), temporal convolution networks (TCN), attention, scientific 
machine learning, EEG, motor imagery, classification 
 

I. INTRODUCTION 

HE brain-computer interface (BCI) is a system that 
interprets brain activity and converts it into commands to 

control an external device, such as a wheelchair or a drone. BCI 
is a cutting-edge technology that has the potential to transform 
the world and further enhances the quality of life, with a wide 
range of industrial applications spanning from medical 
applications to human augmentation [1], [2].  

The brain signal can be recorded using various techniques, 
such as electroencephalography (EEG). EEG is a non-invasive 
method that records the electrical activities of the brain. The 
EEG signal is captured on the scalp as a two-dimensional 
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matrix of real values (time and channel). EEG is widely used 
and preferred over other techniques due to its ease of use, low 
cost, low risk, portability, and high temporal resolution, making 
it suitable for industrial applications. 

Motor imagery (MI) is the activity of thinking about moving 
a part of the human body without physically moving it. EEG-
based MI (MI-EEG) activities have been employed in a variety 
of medical applications, including stroke rehabilitation, 
wheelchair control, prostheses control, exoskeleton control, 
cursor control, speller, and thought-to-text conversion. MI-
EEG signals have also been used in non-medical applications 
such as vehicle control, drone control, environment control, 
smart home, security, gaming, and virtual reality [2]. Therefore, 
MI-EEG signals have great applicability in a variety of medical 
and non-medical industry applications. However, the real-
world applications are still limited by the decoding performance 
and generalization ability of the MI-EEG signal. 

One of the main challenges for the real-world application of 
MI-EEG BCI is accurately recognizing human intention from 
low signal-to-noise ratio and nonstationary brain signals with 
various sources of artifacts, including biological artifacts (e.g., 
muscle movements, eye blinking), electronic equipment (e.g. 
computers and wireless devices), and environmental noise (e.g., 
light and sound). These artifacts, along with channel 
correlation, subject dependency, and high dimensionality of 
EEG signals make the analysis and classification of brain signal 
a challenging task. 

Several conventional machine learning (ML) and deep 
learning (DL) approaches have been proposed to address the 
difficulties involved in classifying MI-EEG tasks. Among the 
conventional ML approaches that rely on manual feature 
extraction, filter bank common spatial patterns (FBCSP) [3] and 
its variants achieved the best performance in MI classification. 
In contrast to conventional methods, DL can learn distinct and 
latent features from raw EEG data without the requirement for 
pre-processing or manual feature extraction. DL has been used 
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effectively in a variety of applications, including image, video, 
audio, and text analysis [4]–[7]. Recently, motivated by the 
significant success of DL techniques in other applications, 
many researchers have employed DL algorithms to classify MI 
tasks. 

In the past five years, the number of studies using DL 
methods to classify MI tasks has increased rapidly [2]. Different 
DL architectures was proposed for MI classification including 
convolutional neural network (CNN) [8]–[13], recurrent neural 
network (RNN) [14], [15], deep belief network (DBN) [16], 
Auto-encoder (AE) [17], and hybrid DL models [8], [18]. CNN 
was the most widely used architecture for MI classification [2]. 
Standard CNN models with light [12] and deep architectures 
[19] have been proposed, as well as many other CNN varieties, 
including inception-based CNN [10], [11], residual-based CNN 
[20], 3D-CNN [20], multi-scale CNN [13], multi-layer CNN 
[18], multi-branch CNN [9], [20], and attention-based CNN 
[8]–[11], [13]. Several other DL models have also been 
suggested by some studies for classifying MI tasks. Xu et al. 
[16] proposed a DBN model based on restricted Boltzmann 
machines (RBMs) for feature extraction and a support vector 
machine (SVM) for classification. Hassanpour et al. [17] 
proposed a stacked auto-encoder (SAE) to classify MI tasks 
using frequency features. In other studies, researchers have 
attempted to extract temporal information from the MI-EEG 
signal using recurrent neural networks. For example, 
researchers in [14] proposed a long short-term memory (LSTM) 
model combined with FBCSP features and an SVM classifier. 
In another study [15], the authors also adopted FBCSP features 
and used them as inputs to a gated recurrent unit (GRU) model. 
The study showed that the GRU model performed better than 
the LSTM. In general, CNN models have shown better 
performance in MI task classification than other DL models [2], 
e.g., RNN, SAE, and DBN. Therefore, many researchers have 
suggested integrating CNN with other DL models, such as 
LSTM [8] and SAE [18], and encouraging results have been 
obtained. 

Recently, a new CNN variant called temporal convolutional 
network (TCN) was specifically designed for time series 
modeling and classification [21]. TCN outperformed other 
recurrent networks such as LSTM and GRU in many sequence-
related tasks [21]. In contrast to typical CNNs, TCN can 
exponentially expand the size of the receptive field with a linear 
increase in the number of parameters, and unlike RNNs it does 
not suffer from vanishing or exploding gradients. Some recent 
studies have used TCN architectures to classify MI tasks [22], 
[23]. Ingolfsson et al. [22] proposed a TCN model named EEG-
TCN that combines TCN with the well-known EEGNet 
architecture [12]. A recent study in [23] attempted to improve 
the EEG-TCN model using the feature fusion technique. Our 
research is an ongoing contribution to these works, which 
utilizes scientific machine learning (SciML) and attention 
mechanism with TCN architecture. 

Scientific machine learning is a new field that combines 
machine learning and scientific computing to produce domain-
aware ML models that are reliable, robust, scalable, and 
interpretable. SciML aims to derive insights from scientific data 

to reduce ML model parameters, prevent overfitting, enhance 
extrapolation, and overcome domain-specific data challenges, 
including noisy data, high dimensionality, and low signal-to-
noise. SciML can produce the next wave of data-driven 
scientific discovery in the engineering, physical, and medical 
sciences [24]. 

The attention mechanism is an effort to emulate human brain 
behavior of selectively focusing on a few significant elements 
while ignoring others. Integrating the attention mechanism with 
DL models helps to focus automatically (by learning) on the 
most important parts of the input data. The first attention-based 
model (RNN model) was proposed in 2015 by Bahdanau et al. 
[25], known as additive attention. In the same year, Luong et al. 
[26] proposed an attention layer with a multiplication scoring 
function, known as multiplicative attention. In 2017, Google 
researchers proposed a pure attention model with multi-head 
attention, which consists of several self-attention layers [27]. 
These attention-based models were originally proposed for 
natural language processing (NLP) and have subsequently been 
used in other fields. For computer vision, several attention 
blocks have been proposed, such as squeeze-and-excitation 
(SE) [28] and convolutional block attention module (CBAM) 
[29].  

Recently, researchers have used attention-based DL models 
to classify MI-EEG signals [8]–[11], [13]. For instance, the 
authors in [8] employed self-attention with LSTM and graph 
neural representation to decode MI tasks. The researchers in 
[10], [11] combined attention layers with inception-CNN and 
LSTM. In a more recent study, Altuwaijri et al. [9] proposed an 
attention-based multi-branch CNN model for classifying MI 
tasks using raw data. The authors used three SE attention blocks 
as intermediate layers in three CNN branches. 

Although the current studies showed promising results in 
decoding MI-EEG signals, the classification performance is 
still limited and requires further improvement. 

In this paper, we propose an attention-based temporal 
convolutional network, ATCNet, to decode MI-EEG brain 
signals. This research utilizes SciML to address domain-
specific MI-EEG data challenges, which results in a robust, 
interpretable, and explainable DL model specifically designed 
for decoding MI-EEG brain signals. The proposed DL model 
processes the MI-EEG data in three steps: first, encode the MI-
EEG signal into a sequence of high-level temporal 
representations using conventional layers, then, highlight the 
most valuable information in the temporal sequence using an 
attention layer, and finally, extract high-level temporal features 
from the highlighted information using a temporal 
convolutional layer. The proposed model utilizes a multi-head 
self-attention and convolutional-based sliding window to boost 
the performance of MI classification. This research highlights 
the following contributions: 

1. We propose a high-performance ATCNet model, which 
utilizes the powerful of TCN, SciML, attention mechanism, and 
convolutional-based sliding window. 

2. Performing sliding window using convolution helps 
augment MI data and efficiently enhance accuracy, by 
parallelizing the process and reducing computations.  
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3. Self-attention helps the DL model to attend to the most 
effective MI information in the EEG data, and the multiple 
heads help to focus on multiple positions, resulting in multiple 
attention representations. 

4. The proposed model achieves outstanding results in the 
BCI Competition IV-2a (BCI-2a) dataset [30].   

For reproducibility, the code for this research and the trained 
models will be released on GitHub. The remainder of the article 
is organized as follows. Section II describes the proposed 
ATCNet model. In Section III, we present and discuss the 
results. Then we finally conclude in Section IV. 

II. PROPOSED ATCNET MODEL 

The proposed ATCNet model consists of three main blocks: 
convolutional (CV) block, attention (AT) block, and temporal 
convolutional (TC) block, as shown in Figure 1. CV block 
encodes low-level spatio-temporal information within the MI-
EEG signal through three convolutional layers: temporal, 
channel depth-wise, and spatial convolutions. The output of the 
CV block is a temporal sequence with a higher-level 
representation. The AT block then highlights the most 
important information in the temporal sequence using a multi-
head self-attention (MSA). Finally, the TC block extracts high-
level temporal features within the temporal sequence using 
TCN and feeds them into a fully connected (FC) layer with a 
SoftMax classifier. 

The temporal sequence, output from CV block, can be split 
into multiple windows and each is fed to AT/TC blacks 
separately. The output of all windows is then concatenated and 
fed to a SoftMax classifier. This helps efficiently augment the 
data and enhances accuracy. The details of ATCNet blocks are 
described in the following subsections. 

A. Preprocessing and Input Representation 

In this research, we feed raw MI-EEG signals into the proposed 
model without preprocessing, that is, the full frequency band, 
all channels, and without artifact removal.  

ATCNet model takes as input a motor imagery trial 𝑋௜ ∈

ℝ஼×்  consisting of 𝐶  channels (EEG electrodes) and 𝑇  time 
points. The objective of the ATCNet model is to map the input 
MI trial 𝑋௜  to its corresponding class 𝑦௜ , given a set of 𝑚 
labeled MI trials 𝑆 = {𝑋௜ , 𝑦௜}௜ୀଵ

௠ , where 𝑦௜ ∈ {1, … , 𝑛}  is the 
corresponding class label for trial 𝑋௜  and 𝑛 is the total number 
of defined classes for set 𝑆. For the BCI-2a [30] dataset, 𝑇 =
1125  time points, 𝐶 = 22  EEG channels, 𝑛 = 4  MI classes, 
and 𝑚 = 5184 MI trials. 

B. Convolutional (CV) block 

The CV block is similar to the EEGNet architecture proposed 
in [12]. CV block differs from EEGNet by using 2D 
convolution instead of separable convolution, which showed 
better performance. CV block also uses different parameter 
values than those used in [12]. 

 
Figure 1. The components of the proposed ATCNet model. 

CV block consists of three convolutional (conv) layers, as 
shown in Figure 2. The first layer performs a temporal 
convolution using 𝐹ଵ  filters of size (1, 𝐾஼) , where 𝐾஼  is the 
filter length in the time axis. 𝐾஼  was set to be one-fourth of the 
sampling rate (64 for BCI-2a). This allows the filters to extract 
temporal information associated with frequencies above 4 Hz. 
The output of this layer is 𝐹ଵ temporal feature maps. The second 
layer is a depth-wise convolution with 𝐹ଶ filters of size (𝐶, 1), 
where 𝐶  is the number of EEG channels. Using depth-wise 
convolution, each filter extracts spatial features (i.e., related to 
EEG channels) from a single temporal feature map. Therefore, 
the output of this layer is 𝐹ଵ × 𝐷 feature maps, where 𝐷 is the 
number of filters linked to each temporal feature map in the 
previous layer. 𝐷 is set empirically to 2. 𝐹ଵ × 𝐷  determine the 
output dimension of the CV block. The depth-wise convolution 
is followed by an average pooling layer of size (1, 8) to abstract 
the temporal data by a factor of 8. This reduces the sampling 
rate of the signal to ~32Hz. The third convolutional layer 
consists of 𝐹ଶ  filters of size (1, 𝐾஼ଶ) . 𝐾஼ଶ  was set to 16 to 
decode MI activities within 500 ms (for 32 Hz sampled data). 
Finally, a second average pooling layer with a size of (1, 𝑃ଶ) is 
used to reduce the sampling rate to ~32/𝑃ଶ Hz. 𝑃ଶ  is used to 
control the length of the temporal sequence produced by CV 
block. The second and third conv layers are followed by batch 
normalization [31] to speed up network training and then by 
exponential linear unit (ELU) activation for nonlinearity.
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Figure 2. CV block performs spatio-temporal encoding through three convolutional layers. The CV block receives a raw MI-EEG signal and outputs a temporal 
sequence with 𝑇஼ elements. Each element is a vector of size 𝐹ଶ. 

 
CV block output a sequence  𝑧௜ ∈ ℝ ೎்×ௗ  of temporal 
representation consisting of 𝑇௖  temporal vectors each with 
dimension 𝑑 = 𝐹ଶ = 𝐹ଵ × 𝐷. We empirically set 𝑑 𝑡𝑜 32. The 
length of the temporal sequence 𝑧௜ is determined by  

𝑇௖ = 𝑇/8𝑃ଶ (1) 

where 𝑇 refers to the time points of the original EEG signal.  

C. Convolutional-based sliding window (SW) 

Instead of entering the whole 𝑇௖  samples of 𝑧௜ to the later layers, 
a sliding window has been used to divide the temporal 
sequences into multiple windows. This helps to augment the 
data and enhance the decoding accuracy. However, the sliding 
window raises the computations, because it requires the input 
data to be passed through the DL model n times (instead of 
once), where n stands for the number of windows. As a result, 
the computations are incremented n times. But in our approach, 
we used a sliding window as integration with convolutional 
layers (in the convolutional block). In this approach, 
convolution computations are performed once for all windows, 
which reduces training and inference time by parallelizing the 
process. This technique was originally used in sliding-window-
based object detection. The convolutional-based sliding 
window has been described in detail by Schirrmeister et al. [32].  

We used a sliding window of length 𝑇௪ with one step stride 
to divide the temporal sequence 𝑧௜ into multiple windows z௜

௪ ∈

ℝ்ೢ ×ௗ  with 𝑤 = 1, … , 𝑛 denoting the window index, and 𝑛 is 
the total number of windows. Each window z௜

௪ is then entered 
separately to the later AT block and then to the TC block. The 
window length 𝑇௪ is determined by: 

𝑇௪ = 𝑇௖ − 𝑛 + 1, 𝑇௖ > 𝑛 ≥ 1 (2) 

𝑇௪ = 𝑇
8𝑃ଶ

ൗ − 𝑛 + 1 (3) 

If the CV block performs two temporal pooling of size 𝑃ଵ = 8 
and 𝑃ଶ = 7, CV will produce a temporal sequence 𝑧௜ consisting 
of 𝑇௖ = 20 vectors (Eq. 1, where 𝑇 = 1125). Each vector will 
represent 56 (8 × 7) time-points in the original MI-EEG signal 
𝑥௜ . Therefore, performing one step sliding in the 𝑧௜ is equivalent 
to 56 time-steps sliding in the original signal 𝑥௜. 

D. Attention (AT) block 

In psychology, the cognitive process of selectively focusing on 
one or a few things while disregarding others is known as 
attention. In deep neural networks, the attention mechanism is 
an effort to emulate the human brain behavior of selectively 
focusing on a few significant elements while ignoring others. In 
the visual world, subjects use both volitional and nonvolitional 
cues to selectively focus attention. The former is task-
dependent, and the latter is based on the conspicuity and 
saliency of things in the surroundings. Inspired by the voluntary 
and involuntary attention cues, the attention mechanism can be 
emulated using three components: values (sensory inputs), keys 
(nonvolitional cues), and queries (volitional cues). The 
interaction of queries and keys creates attention pooling that 
biases the selection of values, as demonstrated in Figure 3. 

The attention mechanism can be implemented based on 
attention scores or by different machine learning algorithms such 
as reinforcement learning. This research adopts an attention 
scores-based approach, i.e., MSA, due to its large success in 
various fields such as NLP and computer vision. 

The attention block consists of an MSA layer as described 
in [27].  MSA consists of several self-attention layers (i.e., 
scaled dot-product attention) called heads, as shown in Figure 
4. Each self-attention layer consists of three main components: 
query 𝑄, keys 𝐾, and values 𝑉. Interactions between query and 
keys produce attention scores that guide selection bias over 
values. The detailed implementation of this interaction is as 
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follows. Given a window representation 𝑧௜
௪ , encoded by CV 

block, the query/key/value vectors are calculated for each batch 
using linear transformation as: 

𝑞௧
௛ = 𝑊ொ

௛ 𝐿𝑁൫𝑧௜,௧
௪ ൯         ∈ ℝௗಹ,         𝑊ொ

௛ ∈ ℝௗ×ௗಹ  
(4) 

𝑘௧
௛ = 𝑊௄

௛ 𝐿𝑁൫𝑧௜,௧
௪ ൯         ∈ ℝௗಹ,        𝑊௄

௛ ∈ ℝௗ×ௗಹ    (5) 

𝑣௧
௛ = 𝑊௏

௛ 𝐿𝑁൫𝑧௜,௧
௪ ൯         ∈ ℝௗಹ,        𝑊௏

௛ ∈ ℝௗ×ௗಹ     (6) 

where LN stands for Layer Normalization [33], 𝑡 = 1, … , 𝑇௪ is 
an index over the temporal vectors in window 𝑤 and 𝑇௪ is the 
length of the window (the total number of temporal vectors),  ℎ =
1, … , 𝐻 is an index over multiple attention heads and 𝐻 is the 
total number of heads. The diminution of the attention head is set 
empirically to 𝑑𝐻 = 𝑑 2𝐻⁄ . 

 
Figure 3. The interaction of queries and keys creates attention pooling that 
biases the selection of values. 

 

Figure 4. Multi-head self-attention. 

Given a query 𝑞௧
௛ ∈ ℝ௤ୀௗಹ  and 𝑇௪  key-value pairs 

(𝑘ଵ
௛, 𝑣ଵ

௛), … . , ൫𝑘்ೢ
௛ , 𝑣்ೢ

௛ ൯, where 𝑘௧ᇲ
௛ ∈ ℝ௞ୀௗಹ  and 𝑣௧ᇲ

௛ ∈ ℝ௩ୀௗಹ . 
The attention pooling 𝑓 that generates the context vector 𝑐௧

௛ is 
defined as a weighted sum of the values 𝑣௧ᇲ

௛ : 

𝑐௧
௛ = 𝑓൫𝑞௧

௛, 𝑘௧ᇲ
௛ , 𝑣௧ᇲ

௛ ൯ = ෍ 𝛼௧௧ᇲ
௛ 𝑣௧ᇲ

௛

𝑇𝑤

௧ᇲୀଵ

∈ ℝ𝑑𝐻 , ෍ 𝛼௧௧ᇲ
௛ = 1

𝑇𝑤

௧ᇲୀଵ

 (7) 

The attention weight (scalar) 𝛼௧௧ᇲ
௛  of the query 𝑞௧

௛ and key 

𝑘௧ᇲ
௛  is calculated by applying the SoftMax function on the 

corresponding alignment scores 𝑒௧௧ᇲ
௛  as follows 

𝛼௧௧ᇲ
௛ = softmax൫𝑒௧௧ᇲ

௛ ൯ =
exp൫𝑒௧௧ᇲ

௛ ൯

∑ 𝑒𝑥𝑝൫𝑒௧𝑘
௛ ൯

𝑇𝑤
𝑘=1

  ∈ ℝ   (8) 

The alignment scores 𝑒௧௧ᇲ
௛  are calculated using the attention 

scoring function 𝑎  as in Eq. 9. Distinct selections for the 

attention scoring function 𝑎 result in different attention pooling 
behaviors. Two common scoring functions have been proposed: 
additive attention (Bahdanau attention [25]) and multiplicative 
attention (Luong attention [26]). In this paper, we use 
multiplicative attention, specifically scaled dot-product 
attention defined by Vaswani et al. [27], which is more 
computationally efficient. The dot product operation, however, 
necessitates that both the query and the key have the same 
vector length. The scoring function of scaled dot-product 
attention is defined in Eq. 10. The dot product is divided by 

ඥ𝑑ு  to ensure that the variance of the dot product remains 
constant regardless of vector length. 

𝑒௧௧ᇲ
௛ = 𝑎൫𝑞௧

௛, 𝑘௧ᇲ
௛ ൯        ∈ ℝ (9) 

𝑎 =
(𝑞௧

௛)்𝑘௧ᇲ
௛

ඥ𝑑ு

              ∈ ℝ (10) 

For each head, the context vectors of the scaled dot-product 
attention for a minibatch with 𝑛 = 𝑇௪ queries and 𝑚 = 𝑇௪ key-
values pairs (global attention) are determined by Eq. 11, where 
keys and queries of length 𝑑𝐻 and values of length 𝑣 (in this 
study 𝑣 = 𝑑ு  = 8 ). Attention context vectors manage and 
quantify the interdependence either between the input and output 
components (general attention) or within the input components 
(self-attention). In this research, we adopt the self-attention 
mechanism as it helps parallel computing attention to all inputs 
at the same time. 

𝐶௛ = softmax ቀ
ொ೓(௄೓)೅

ඥ𝑑𝐻
ቁ 𝑉௛  ∈ ℝ௡=𝑇𝑤 × ௩ୀ𝑑𝐻   

Where 𝑄 ∈ ℝ௡×ௗಹ, 𝐾 ∈ ℝ௠×ௗಹ, and 𝑉 ∈ ℝ௠×௩    

(11) 

Then, the MSA is computed by projecting the concatenation 
of the context vectors from all heads and adding the result to the 
input window 𝑧௜

௪ using a residual connection, as in Eq. 12. 

𝑧௜
௪ = 𝑊ை [𝐶ଵ, … , 𝐶ு] + 𝑧௜

௪ ∈ ℝ்ೢ ×ௗ,   𝑊ை ∈ ℝௗಹ×ௗ (12) 

E. Temporal Convolutional (TC) block 

The TC block has the same architecture as the TCN described in 
[22]. TCN consists of a stack of residual blocks. The residual 
block composes of two dilated causal convolutional layers, each 
one followed by batch normalization [31] and ELU activation, 
as shown in Figure 5.  

 
Figure 5. The architecture of the temporal convolutional network (TCN) 
consisting of two residual blocks. 
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Figure 6. Visualize a TCN block with a depth of 2, i.e., consisting of two residual blocks, kernel size = 4, and number of filters = 32. The output of the first residual 
block is the input of the second. The receptive field size for this TCN will be 19, so the input length 𝑇௪ should be ≤ 19. This figure shows a sequence of 16 
temporal elements (𝑇௪= 16) entering the TCN.  

Causal convolutions are used to prevent any information from 
traveling from the future to the past, i.e., the output at time 𝑡 
depends only on the inputs from time 𝑡  and earlier. Dilated 
convolutions allow the receptive field to be expanded 
exponentially while increasing the network depth. Therefore, 
dilated causal convolutions can learn relationships in long 
sequences. The residual connection performs an element-wise 
addition of the input and output feature map, 𝐹(𝑥) + 𝑥, which is 
effective in deep networks due to its ability to learn the identity 
function. In the residual block, we use identity mapping because 
the input and output dimensions are identical (32), otherwise, a 
linear transformation, i.e., 1 × 1 convolution, is used.  

The receptive field size (RFS) of the TCN increases 
exponentially with the number of stacked residual blocks, L, due 
to the exponential increase in dilation D with each succeeding 
block. The RFS is controlled by two parameters: the number of 
residual blocks L and the kennel size 𝐾் , as defined in Eq. 13. 

RFS = 1 + 2(𝐾் − 1)(2௅ − 1) (13)

In the proposed ATCNet, the TC block consists of a TCN with 
𝐿 = 2  residual blocks and 32 filters of size 𝐾் = 4  for all 
convolutional layers. With this TCN, the RFS is 19, that is, the 
TCN can process up to 19 elements in a sequence, as shown in 
Figure 6. Therefore, the temporal sequence entered in the TC 
block should be less than or equal to 19 to allow TCN to process 
all temporal information without loss. For sequences that are 
longer than RFS, they can be split into multiple windows each 
with a length less than RFS. Each window is then entered 
separately into the TC block. In this research, we fixed RFS to 
19 and changed the length of windows entering the TC block 
(𝑇௪), as defined in Eq. (3). 

Figure 6 shows a sequence of 16 temporal elements (𝑇௪= 16) 
entering the TCN. Each element is a vector of size 𝐹ଶ (#filters in 
CV block). The output of the TCN is the last element in the 

sequence, which is a vector of size 𝐹்  (# filters in TCN). In this 
study, 𝐹ଶ  = 𝐹்  = 32. The outputs of the TC block from all 
windows are concatenated and then fed to an FC layer with 4 
neurons, as the number of MI classes, followed by a SoftMax 
classifier, as shown in Figure 1. 

Unless otherwise noted, hyperparameters used for all 
experiments in this article are shown in Table 1. These 
parameters were set empirically based on several experiments 
and were fixed for all subjects. 

Table 1. The hyperparameter setting that used for all subjects. 
Attention (AT) block Convolutional (CV) block  

# of attention heads (H) 
Head size (dH) 
Dropout rate (pa) 
 

2 
8 

0.5 

# Temporal filters (F1) 
Kernel size (Kc) 
Depth multiplier (D) 
2nd pooling size (P2) 
Dropout rate (pc) 
# of windows (n) 
 

16 
64 
2 
7 

0.3 
5 Temporal Convolutional (TC) block 

# of residual blocks (L) 
Kernel size (KT) 
# Filters (FT) 
Dropout rate (pt) 

2 
4 
32 
0.3 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Selected Dataset and Evaluation Approaches 
BCI Competition IV-2a (BCI-2a) dataset [30] is used to train 

and evaluate the proposed model. BCI-2a is a well-known public 
MI-EEG dataset created by Graz University of Technology in 
2008. BCI-2a has been widely used in the research community 
and is thus considered a benchmark dataset in MI-EEG 
decoding. It contains a limited number of samples captured 
under uncontrolled conditions with a considerable amount of 
artifacts, which makes decoding MI tasks using this dataset a 
challenging process.  

BCI-2a dataset consists of 5184 trials (samples) of MI-EEG 
data recorded using 22 EEG electrodes from 9 subjects (576 
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trials per subject). MI trials last 4 seconds and were sampled at 
250 Hz and filtered between 0.5 and 100 Hz. Each trial belongs 
to one of four MI tasks: imagining of movement of the left hand 
(class 1), right hand (class 2), both feet (class 3), and tongue 
(class 4). For each subject, two sessions were recorded on 
different days. Each session consists of 288 trials per subject. 
One of these sessions is used to train the model and the other 
for evaluation. 

The proposed model is evaluated using subject-dependent 
(subject-specific) and subject-independent approaches. For 
subject-dependent, we used the same training and testing data 
as the original competition, i.e., 288 x 9 trials in session 1 for 
training, and 288 x 9 trials in session 2 for testing. For subject-
independent, we used cross-subject evaluation, known as 
"Leaving One Subject Out" (LOSO). In LOSO, the model is 
trained and evaluated by several folds, equal to the number of 
subjects, and for each fold, one subject is used for evaluation and 
the others for training. The LOSO evaluation technique ensures 
that separate subjects (not visible in the training data) are used 
to evaluate the model. 

B. Performance Metrics 

The proposed models in this research are evaluated using 
accuracy, Eq. 14, and Kappa score, Eq. 15. 

ACC =
∑ 𝑇𝑃௜/௡

௜ୀଵ 𝐼௜

 𝑛
  (14) 

where TPi is the true positive, i.e., the number of correctly 
predicted samples in class i, li is the number of samples in class 
i, and n indicates the number of classes. 

𝜅_𝑠𝑐𝑜𝑟𝑒 =
1

𝑛
෍

𝑃௔ − 𝑃௘

1 − 𝑃௘

௡

௔ୀଵ

 ,     (15) 

where n is the number of classes, Pa is the actual percentage of 
agreement, and Pe is the expected percentage chance of 
agreement. 

C. Training Procedure 

The models were trained and tested by a single GPU, Nvidia 
GTX 2070 8GB, using the TensorFlow framework. For all 
experiments, we used the following training configurations. 
Glorot uniform initializer is used to initialize the weights. The 
models are trained using the Adam optimizer with a learning rate 
of 0.0009, batch size of 64, and a categorical cross-entropy loss 
over 1000 epochs with a patience of 300. These hyperparameters 
were determined through several experiments to help the models 
generalize well.  

The proposed ATCNet model achieves an overall accuracy 
of 85.38% and a κ-score of 0.81, which is better than the state-
of-the-art results. 

D. The contributions of ATCNet blocks 

In this subsection, we perform an ablation analysis to measure 
the effectiveness of each block in the ATCNet model. Table 2 
presents the impact of removing one or more blocks in the 
ATCNet model on the performance of MI classification using 

the BCI-2a dataset. Blocks were removed before training and 
validation operations. The results showed that the AT block 
increased the overall accuracy by 1.54% and SW by 2.28%. The 
addition of the TC block also increased accuracy by 1.04% 
compared to using the CV block only. The results showed that 
each block adds its contribution regardless of the other blocks 
except for the attention block. Attention block improves 
accuracy if followed by TC block. If the TC block is removed, 
the accuracy drops to 79.44%, which is lower than the accuracy 
after removing both AT and TC blocks, 82.60%, and even 
removing all blocks, 81.71%. This means that placing the 
attention layer at the end of the model harms the performance 
unless followed by an additional classification layer. 

Table 2. Contribution of each block in the ATCNet model to the performance 
of MI classification using the BCI-2a dataset. AT: attention, SW: sliding 
window, TC: temporal convolution.  

Removed block Accuracy % κ-score 

None (ATCNet) 85.38 0.805 

AT 83.84 0.784 

SW 83.10 0.775 

SW + AT 82.75 0.770 

TC 79.44 0.726 

SW + TC 80.48 0.740 

AT + TC 82.60 0.768 

SW + AT + TC 81.71 0.756 

E. Varying the temporal sequence length  

In the following experiments, we investigate the effect of 
changing the length of the temporal sequence (Tc) produced by 
the CV block as well as the number of windows n. The sequence 
length is controlled by the size of the second pooling layer (P2) 
in the CV block, as defined in Eq. 1. Figure 7 shows the accuracy 
of MI classification using three temporal sequences of lengths 
17, 20, and 28, which encode the original MI-EEG signal with a 
resolution of 64 samples (256 ms), 56 samples (225 ms), and 40 
samples (160 ms), respectively. Each sequence is studied while 
increasing the number of windows from 1 to 16. ATCNet works 
best when the window length is less than RFS (19). Using a 
longer window than RFS significantly reduces accuracy due to 
information loss, as shown in the 28-sample sequence (while TW 
= 20 to 28). In general, increasing the number of windows 
improved classification accuracy as this helps to augment the 
data and helps the model learn the changing MI information 
from different time positions. However, this increase in accuracy 
reaches a point where the window contains a narrow signal that 
may not contain enough MI information to train the model.  For 
example, by dividing the 20-sample sequence into 12 windows 
with a stride of one, each window will have 6 samples 
corresponding to 384 samples (~1.5 s) in the original signal with 
a stride of 64. This justifies the decrease in accuracy for 
sequences of lengths 17 and 20 starting in 6 windows. The 20-
sample sequence performed better than the other sequences in 
many windows and the best performance was achieved using 5 
windows (each window of length 16). This indicates that 
encoding the original MI-EEG signal at a resolution of 56 
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samples (225 ms) provides a good representation compared to a 
lower (e.g., 160 ms) or higher (e.g., 256 ms) resolution. 
 

 
Figure 7. Accuracy on BCI-2a as a function of the number of windows using 
three temporal sequences of length 17, 20, and 28. These sequences were 
studied while varying the number of windows from one window, that is, the 
whole sequence, to 16 windows. Each window has a different length (Tw) 
depending on the length of the original sequence (Tc). The 20-sample sequence 
showed better performance than the others and the best performance was using 
5 windows. 

F. Comparing different attention schemes 

Figure 8 compares the performance of the MSA block with a 
different number of heads using dimension sizes of 8 and 16, 
i.e., the size of each attention head for query/key/value vectors. 
The results showed that using 2 heads each of size 8 gave the 
best results. This is because the MI-EEG dataset has a limited 
number of samples, which requires a light MSA layer to 
converge well. In addition, the temporal data entered into the 
MSA layer has a light representation, i.e., sequence length = 16 
and embedding size = 32, which requires few parameters to 
train.  

In Table 3, we compare the performance of the proposed 
model using three attention mechanisms: MSA [27], SE [28], 
and CBAM [29]. The number of MSA heads was set to 2 and 
the head size was set to 8 and 16. The reduction ratio for both 
SE and CBAM was experimentally set to 8. The results showed 
that all attention mechanisms improved the performance of the 
ATCNet model while the best performance was achieved by 
MSA, indicating that MSA is more suitable for a two-
dimensional EEG representation. 

G. Comparison to recent studies  

Table 4  summarizes the accuracy and κ-score of the proposed 
ATCNet model using the BCI-2a dataset and its comparison 
with the reproduced EEGNet [12], EEG-TCNet [22], and 
TCNet_Fusion [23], as these models have some similarities with 
the proposed model. The results of the reproduced models are 
based on the hyperparameters identified in the original articles, 
while pre-processing, training, and evaluation followed the same 
procedure defined in this research. Table 4 shows that ATCNet 
performed better than EEGNet, EEG-TCNet, and 
TCNet_Fusion for all subjects with an average accuracy of 
85.38% and a κ-score of 0.81. This represents a 4.71% increase 
in accuracy over these models. In addition, the proposed model 
achieved the best standard deviation among subjects with a 
value of 9.08%, indicating that the accuracy is more robust over 

all subjects. The average confusion matrices of ATCNet and the 
reproduced models are shown in Figure 9. ATCNet 
demonstrated an improvement in MI decoding for all MI classes 
compared to the other models. 

Table 5 presents the reported overall accuracy and κ-score 
of recent studies in the subject-specific MI-EEG classification 
using the BCI-2a dataset. The proposed ATCNet model 
performs better than the recent studies using raw EEG data and 
without pre-processing. In addition to the subject-specific 
(subject-dependent) results, we evaluated the performance of the 
proposed model in subject-independent classification, which is 
a measure of the model's generalization ability. The proposed 
model achieved the best subject-independent performance on 
the BCI-2a dataset as shown in Table 6. 

 
Figure 8. Accuracy on BCI-a2 as a function of the number of attention heads 
using head sizes of 8 and 16. Reducing head size as well as the number of heads 
showed better performance due to the small size of the dataset and its light 
representation. The best performance was using two 8-size heads. 

Table 3. ATCNet model performance using different attention schemes: multi-
head self-attention (MSA) with 8 and 16 head size, squeeze-and-excitation 
(SE), and convolutional block attention module (CBAM). 

Attention mechanism Accuracy % κ-score 

No Attention 83.84 0.784 

MSA-8 85.38 0.805 

MSA-16 85.07 0.801 

SE 84.07 0.788 

CBAM 84.30 0.791 

Table 4. Performance (accuracy (%) and κ-score) comparison of subject-
specific classification using BCI-2a dataset for the proposed model with other 
reproduced models.  

 
Proposed 
(ATCNet) 

EEGNet 
[12] 

EEG-TCNet 
[22] 

TCNet 
Fusion [23] 

Sub. % κ % κ % κ % κ 

1 88.5 0.85 88.5 0.85 84.0 0.79 86.1 0.81 

2 70.5 0.61 66.0 0.55 66.3 0.55 66.0 0.55 

3 97.6 0.97 95.1 0.94 94.1 0.92 93.4 0.91 

4 81.0 0.75 73.6 0.65 72.6 0.63 72.6 0.63 

5 83.0 0.77 75.4 0.67 76.0 0.68 79.9 0.73 

6 73.6 0.65 64.2 0.52 62.9 0.50 66.7 0.56 

7 93.1 0.91 90.3 0.87 89.9 0.87 90.3 0.87 

8 90.3 0.87 85.8 0.81 84.7 0.80 85.8 0.81 

9 91.0 0.88 86.5 0.82 85.4 0.81 85.4 0.81 

Mean 85.4 0.81 80.6 0.74 79.6 0.73 80.7 0.74 

St.D. 9.1 0.12 11.1 0.15 10.7 0.14 10.1 0.13 
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Proposed (ATCNet) EEGNet [12] 

     
EEG-TCNet [22] TCNet Fusion [23] 

     
Figure 9. Average confusion matrices of the proposed ATCNet and the 
reproduced EEGNet, EEG-TCNet, and TCNet_Fusion models. The results 
showed that ATCNet improved MI decoding for all MI tasks compared to 
equivalent models. 

Table 5. Subject-specific performance on the BCI-2a dataset using the same 
original competition division (hold-out approach: 50% training trials and 50% 
test trials). Accuracy (%) and κ-score are the averages for all subjects. 

Method Accuracy κ-score 

Shallow CNN [32] 74.31 0.66 

EEGNet: CNN [12]* 80.59 0.74 

DBN-AE [17] 71.0 _ 

Multi-layer-CNN and MLP [18] 75.0 _ 

EEG-TCNet: CNN and TCN [22]* 79.55 0.73 

Attention multi-scale CNN [13] 79.9 _ 

TCNet_Fusion: multi-layer CNN + TCN [23]* 80.67 0.74 

Attention-inception CNN & LSTM [10] 82.84 _ 

Attention multi-branch CNN [9] 82.87 0.772 

ATCNet: Attention-CNN and TCN (Proposed) 85.38 0.805 

* Reproduced. 

Table 6 Subject-independent performance on the BCI-2a dataset using leave-
one-subject-out (LOSO) cross-validation. Accuracy (%) and κ-score are the 
averages for all subjects. 

Method Accuracy κ-score 

Attention graph convolutional network [8] 60.1 - 

Multi-layer-CNN and AE [18] 55.3 - 

EEGNet: CNN [12]* 68.79 0.584 

Attention multi-branch CNN [9] 69.10 - 

EEG-TCNet: CNN and TCN [22]* 69.52 0.594 

TCNet_Fusion: multi-layer CNN + TCN [23]* 70.58 0.608 

ATCNet: Attention-CNN and TCN (Proposed) 70.97 0.613 

* Reproduced. 

IV. CONCLUSION 

This study proposed a novel attention-based temporal 
convolutional network (ATCNet) for EEG-based motor imagery 

classification. ATCNet consists of three main blocks: the 
convolutional (CV) block, to encode the raw MI-EEG signal into 
a compact temporal sequence, the multi-head self-attention (AT) 
block, to highlight the most effective information in the temporal 
sequence, and the temporal convolutional (TC) block, to extract 
high-level temporal features from the temporal sequence. This 
study also implemented a convolutional-based sliding window 
(SW) combined with CV block to improve the performance of 
MI classification efficiently by parallelizing the process. The 
ablation analysis showed that each block in the ATCNet model 
made a significant contribution to the performance of the 
ATCNet model.  The AT block increased overall accuracy by 
1.54%, the SW by 2.28%, and the TC by 1.04% compared to 
using the CV block only. The proposed ATCNet model 
outperformed recent techniques in MI-EEG classification using 
the BCI-2a dataset with an accuracy of 85.38% and 70.97% for 
the subject-dependent and subject-independent modes, 
respectively. These high results came with a relatively small 
number of parameters (115.2K), which makes ATCNet 
applicable to industrial devices with limited resources. The 
proposed model demonstrated a powerful ability to extract MI 
features from a raw EEG signal without artifact removal and 
with minimal pre-processing using a limited-size and 
challenging dataset. ATCNet showed an overall improvement in 
EEG decoding for all MI classes and all subjects in the BCI-2a 
dataset proving that ATCNet can learn to find generic EEG 
representations across classes and subjects. 

For future work, the proposed model can be further improved 
by using attention mechanisms in several domains. Effective MI 
information occurs in the EEG data at specific time intervals, 
channel locations, and frequency bands; Thus, developing a DL 
model that automatically attends to the most important 
information in these domains is a promising direction for 
improving the performance of MI-EEG classification. The 
proposed model can also be refined using preprocessing 
methods to remove artifacts and deep generative models to 
increase the size of the dataset.  
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