|
a |
|
b/data_preproc.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
""" |
|
|
3 |
Created on Sun Apr 21 13:32:56 2019 |
|
|
4 |
|
|
|
5 |
@author: Winham |
|
|
6 |
|
|
|
7 |
data_preproc.py:用于人工标记后的文件整理 |
|
|
8 |
注意:由于下列代码中包含了对文件的删除,因此在原始人工标记后的文件中 |
|
|
9 |
仅能运行一次。建议运行前先将原始文件备份!!!若遇到错误可重新恢复并 |
|
|
10 |
重新执行。运行前先在同目录下新建一个文件夹119_SEG |
|
|
11 |
|
|
|
12 |
""" |
|
|
13 |
|
|
|
14 |
import os |
|
|
15 |
import numpy as np |
|
|
16 |
import scipy.io as sio |
|
|
17 |
|
|
|
18 |
path = 'G:/ECG_UNet/119_MASK/' # 原始文件目录 |
|
|
19 |
seg_path = 'G:/ECG_UNet/119_SEG/' # 存储信号.npy文件 |
|
|
20 |
|
|
|
21 |
files = os.listdir(path) |
|
|
22 |
|
|
|
23 |
for i in range(len(files)): |
|
|
24 |
file_name = files[i] |
|
|
25 |
print(file_name + ' ' + str(i+1)) |
|
|
26 |
if file_name.endswith('.json'): # 只取已经人工标记好的信号段,即有.json文件配套 |
|
|
27 |
name = file_name[:-5] |
|
|
28 |
mat_name = name + '.mat' |
|
|
29 |
sig = sio.loadmat(path+mat_name)['seg_t'].squeeze() |
|
|
30 |
np.save(seg_path+name+'.npy', sig) |
|
|
31 |
elif file_name.startswith('ann') or file_name.endswith('.png'): |
|
|
32 |
os.remove(path+file_name) |
|
|
33 |
|
|
|
34 |
rest_files = os.listdir(path) |
|
|
35 |
for i in range(len(rest_files)): |
|
|
36 |
if rest_files[i].endswith('.mat'): |
|
|
37 |
os.remove(path+rest_files[i]) |