Diff of /Unet.py [000000] .. [eaa663]

Switch to unified view

a b/Unet.py
1
# -*- coding: utf-8 -*-
2
"""
3
Created on Sun Apr 21 13:49:32 2019
4
5
@author: Winham
6
7
Unet.py: Unet模型定义
8
9
10
"""
11
12
from keras.models import Model
13
from keras.layers import Input, core, Dropout, concatenate
14
from keras.layers.convolutional import Conv1D, MaxPooling1D, UpSampling1D
15
16
17
def Unet(nClasses, optimizer=None, input_length=1800, nChannels=1):
18
    inputs = Input((input_length, nChannels))
19
    conv1 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
20
    conv1 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
21
    pool1 = MaxPooling1D(pool_size=2)(conv1)
22
23
    conv2 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
24
    conv2 = Dropout(0.2)(conv2)
25
    conv2 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
26
    pool2 = MaxPooling1D(pool_size=2)(conv2)
27
    
28
    conv3 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
29
    conv3 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
30
    pool3 = MaxPooling1D(pool_size=2)(conv3)
31
32
    conv4 = Conv1D(128, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
33
    conv4 = Dropout(0.5)(conv4)
34
    conv4 = Conv1D(128, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
35
36
    up1 = Conv1D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling1D(size=2)(conv4))
37
    merge1 = concatenate([up1, conv3], axis=-1)
38
    conv5 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(merge1)
39
    conv5 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
40
    
41
    up2 = Conv1D(32, 2, activation='relu', padding='same', kernel_initializer = 'he_normal')(UpSampling1D(size=2)(conv5))
42
    merge2 = concatenate([up2, conv2], axis=-1)
43
    conv6 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer = 'he_normal')(merge2)
44
    conv6 = Dropout(0.2)(conv6)
45
    conv6 = Conv1D(32, 32, activation='relu', padding='same')(conv6)
46
    
47
    up3 = Conv1D(16, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling1D(size=2)(conv6))
48
    merge3 = concatenate([up3, conv1], axis=-1)
49
    conv7 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(merge3)
50
    conv7 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
51
    
52
    conv8 = Conv1D(nClasses, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
53
    conv8 = core.Reshape((nClasses, input_length))(conv8)
54
    conv8 = core.Permute((2, 1))(conv8)
55
56
    conv9 = core.Activation('softmax')(conv8)
57
58
    model = Model(inputs=inputs, outputs=conv9)
59
    if not optimizer is None:
60
        model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=['accuracy'])
61
62
    return model
63
64
65
if __name__ == '__main__':
66
    print('\nSummarize the model:\n')
67
    model = Unet(3)
68
    model.summary()
69
    print('\nEnd for summary.\n')