|
a |
|
b/Unet.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
""" |
|
|
3 |
Created on Sun Apr 21 13:49:32 2019 |
|
|
4 |
|
|
|
5 |
@author: Winham |
|
|
6 |
|
|
|
7 |
Unet.py: Unet模型定义 |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
""" |
|
|
11 |
|
|
|
12 |
from keras.models import Model |
|
|
13 |
from keras.layers import Input, core, Dropout, concatenate |
|
|
14 |
from keras.layers.convolutional import Conv1D, MaxPooling1D, UpSampling1D |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
def Unet(nClasses, optimizer=None, input_length=1800, nChannels=1): |
|
|
18 |
inputs = Input((input_length, nChannels)) |
|
|
19 |
conv1 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(inputs) |
|
|
20 |
conv1 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv1) |
|
|
21 |
pool1 = MaxPooling1D(pool_size=2)(conv1) |
|
|
22 |
|
|
|
23 |
conv2 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool1) |
|
|
24 |
conv2 = Dropout(0.2)(conv2) |
|
|
25 |
conv2 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv2) |
|
|
26 |
pool2 = MaxPooling1D(pool_size=2)(conv2) |
|
|
27 |
|
|
|
28 |
conv3 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool2) |
|
|
29 |
conv3 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv3) |
|
|
30 |
pool3 = MaxPooling1D(pool_size=2)(conv3) |
|
|
31 |
|
|
|
32 |
conv4 = Conv1D(128, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool3) |
|
|
33 |
conv4 = Dropout(0.5)(conv4) |
|
|
34 |
conv4 = Conv1D(128, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv4) |
|
|
35 |
|
|
|
36 |
up1 = Conv1D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling1D(size=2)(conv4)) |
|
|
37 |
merge1 = concatenate([up1, conv3], axis=-1) |
|
|
38 |
conv5 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(merge1) |
|
|
39 |
conv5 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv5) |
|
|
40 |
|
|
|
41 |
up2 = Conv1D(32, 2, activation='relu', padding='same', kernel_initializer = 'he_normal')(UpSampling1D(size=2)(conv5)) |
|
|
42 |
merge2 = concatenate([up2, conv2], axis=-1) |
|
|
43 |
conv6 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer = 'he_normal')(merge2) |
|
|
44 |
conv6 = Dropout(0.2)(conv6) |
|
|
45 |
conv6 = Conv1D(32, 32, activation='relu', padding='same')(conv6) |
|
|
46 |
|
|
|
47 |
up3 = Conv1D(16, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling1D(size=2)(conv6)) |
|
|
48 |
merge3 = concatenate([up3, conv1], axis=-1) |
|
|
49 |
conv7 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(merge3) |
|
|
50 |
conv7 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv7) |
|
|
51 |
|
|
|
52 |
conv8 = Conv1D(nClasses, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv7) |
|
|
53 |
conv8 = core.Reshape((nClasses, input_length))(conv8) |
|
|
54 |
conv8 = core.Permute((2, 1))(conv8) |
|
|
55 |
|
|
|
56 |
conv9 = core.Activation('softmax')(conv8) |
|
|
57 |
|
|
|
58 |
model = Model(inputs=inputs, outputs=conv9) |
|
|
59 |
if not optimizer is None: |
|
|
60 |
model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=['accuracy']) |
|
|
61 |
|
|
|
62 |
return model |
|
|
63 |
|
|
|
64 |
|
|
|
65 |
if __name__ == '__main__': |
|
|
66 |
print('\nSummarize the model:\n') |
|
|
67 |
model = Unet(3) |
|
|
68 |
model.summary() |
|
|
69 |
print('\nEnd for summary.\n') |