|
a |
|
b/LoadBatches1D.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
""" |
|
|
3 |
Created on Sun Apr 21 13:46:44 2019 |
|
|
4 |
|
|
|
5 |
@author: Winham |
|
|
6 |
|
|
|
7 |
LoadBatches1D.py: 迭代生成训练时的batch |
|
|
8 |
|
|
|
9 |
实现参考:https://github.com/divamgupta/image-segmentation-keras/blob/master/LoadBatches.py |
|
|
10 |
|
|
|
11 |
""" |
|
|
12 |
|
|
|
13 |
import os |
|
|
14 |
import itertools |
|
|
15 |
import numpy as np |
|
|
16 |
from sklearn import preprocessing as prep |
|
|
17 |
|
|
|
18 |
|
|
|
19 |
def getSigArr(path, sigNorm='scale'): |
|
|
20 |
sig = np.load(path) |
|
|
21 |
if sigNorm == 'scale': |
|
|
22 |
sig = prep.scale(sig) |
|
|
23 |
elif sigNorm == 'minmax': |
|
|
24 |
min_max_scaler = prep.MinMaxScaler() |
|
|
25 |
sig = min_max_scaler.fit_transform(sig) |
|
|
26 |
return np.expand_dims(sig, axis=1) |
|
|
27 |
|
|
|
28 |
|
|
|
29 |
def getSegmentationArr(path, nClasses=3, output_length=1800, class_value=[0, 0.5, 1]): |
|
|
30 |
# class_value是在generate_labels.py中定义的,背景0,正常0.5,早搏1,必须要保持一致 |
|
|
31 |
seg_labels = np.zeros([output_length, nClasses]) |
|
|
32 |
seg = np.load(path) |
|
|
33 |
for i in range(nClasses): |
|
|
34 |
seg_labels[:, i] = (seg == class_value[i]).astype(float) |
|
|
35 |
return seg_labels |
|
|
36 |
|
|
|
37 |
|
|
|
38 |
def SigSegmentationGenerator(sigs_path, segs_path, batch_size, n_classes, output_length=1800): |
|
|
39 |
sigs = os.listdir(sigs_path) |
|
|
40 |
segmentations = os.listdir(segs_path) |
|
|
41 |
sigs.sort() |
|
|
42 |
segmentations.sort() |
|
|
43 |
for i in range(len(sigs)): |
|
|
44 |
sigs[i] = sigs_path + sigs[i] |
|
|
45 |
segmentations[i] = segs_path + segmentations[i] |
|
|
46 |
assert len(sigs) == len(segmentations) |
|
|
47 |
for sig, seg in zip(sigs, segmentations): |
|
|
48 |
assert (sig.split('/')[-1].split(".")[0] == seg.split('/')[-1].split(".")[0]) |
|
|
49 |
zipped = itertools.cycle(zip(sigs, segmentations)) |
|
|
50 |
while True: |
|
|
51 |
X = [] |
|
|
52 |
Y = [] |
|
|
53 |
for _ in range(batch_size): |
|
|
54 |
sig, seg = next(zipped) |
|
|
55 |
X.append(getSigArr(sig)) |
|
|
56 |
Y.append(getSegmentationArr(seg, n_classes, output_length)) |
|
|
57 |
yield np.array(X), np.array(Y) |