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A B S T R A C T

Cardiac arrhythmias, deviations from the normal rhythmic beating of the heart, are subtle yet critical indicators
of potential cardiac challenges. Efficiently diagnosing them requires intricate understanding and representation
of both spatial and temporal features present in Electrocardiogram (ECG) signals. This paper introduces
ECGTransForm, a deep learning framework tailored for ECG arrhythmia classification. By embedding a novel
Bidirectional Transformer (BiTrans) mechanism, our model comprehensively captures temporal dependencies
from both antecedent and subsequent contexts. This is further augmented with Multi-scale Convolutions and a
Channel Recalibration Module, ensuring a robust spatial feature extraction across various granularities. We
also introduce a Context-Aware Loss (CAL) that addresses the class imbalance challenge inherent in ECG
datasets by dynamically adjusting weights based on class representation. Extensive experiments reveal that
ECGTransForm outperforms contemporary models, proving its efficacy in extracting meaningful features for
arrhythmia diagnosis. Our work offers a significant step towards enhancing the accuracy and efficiency of
automated ECG-based cardiac diagnoses, with potential implications for broader cardiac care applications.
The source code is available at https://github.com/emadeldeen24/ECGTransForm.
1. Introduction

Arrhythmia is one cardiac condition that affects the normal func-
tioning of the heart and can lead to serious health consequences [1].
Accurate detection and classification of arrhythmias are crucial for
effective treatment and patient management. Electrocardiogram (ECG)
is a widely used non-invasive technique for monitoring cardiac ac-
tivities. The ECG signal provides important information about the
electrical activities of the heart and is widely employed for diagnosing
various cardiac conditions [2]. The task of arrhythmia classification
involves analyzing the complex ECG signals and identifying the specific
arrhythmia type based on its characteristic features [3]. Previously,
classifying ECG signals was achieved by extracting engineered fea-
tures, and then deploying traditional machine learning approaches
like Support Vector Machines, Random Forests, k-nearest Neighbors,
and Naive Bayes. Despite the interpretability and efficiency of these
techniques, the process of manually extracting domain-specific features
by medical professionals is often time-consuming, subjective, and prone
to errors. Therefore, there has been a growing interest in developing
automated approaches for arrhythmia classification using deep learning
techniques.
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In recent years, deep learning techniques have exhibited remarkable
capabilities in automating the diagnosis of arrhythmias, leveraging the
wealth of information contained in ECG signals [4]. The development
of powerful and effective deep learning methods has the potential
to significantly improve the accuracy and efficiency of arrhythmia
diagnosis, and ultimately lead to better patient outcomes.

While existing literature has made substantial progress in arrhyth-
mia classification using deep learning, several recurring challenges
can be identified. Specifically, current models often struggle to effec-
tively capture complex spatial patterns within ECG signals, particularly
those that span multiple scales [5]. Another observation is that these
models often may not fully capture the interdependencies among the
extracted features, potentially missing crucial information that could
enhance classification accuracy [6]. Furthermore, most approaches
model temporal dependencies unidirectionally, overlooking the value
of future context [7]. Last, class imbalance is a common problem
that exists among various ECG arrhythmia classification datasets [8].
These challenges highlight the pressing need for an innovative solution
that holistically addresses both spatial and temporal dimensions while
effectively addressing the class imbalance problem.
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To address the aforementioned limitations, we propose ECGTrans-
Form a deep learning model that incorporates four key components,
each targeting a specific challenge in ECG-based arrhythmia classifi-
cation. The first component, i.e., the Multi-scale Convolutions, aims
to capture spatial patterns across varying scales within the ECG sig-
nal. This stage enhances the model’s ability to detect intricate de-
tails present at different levels of granularity. The second component,
i.e., the Channel Recalibration Module, is designed to rectify the lack of
cross-channel interaction in the extracted features as inspired by [9]. By
fusing spatial and channel-wise information at each layer, this module
enables the model to effectively capture interdependencies among the
extracted features. This holistic approach enhances the representation
of spatial features and their relevance in arrhythmia classification. The
third component, i.e., the Bidirectional Transformer, tackles the tempo-
ral dimension comprehensively. By leveraging bidirectional processing,
our model effectively learns from both past and future contexts, en-
hancing its temporal feature extraction capabilities. This bidirectional
approach allows the model to capture complex temporal dependen-
cies that could be pivotal in distinguishing subtle variations between
arrhythmia classes. Last, we introduce Context-Aware Loss (CAL), a dy-
namic weighting mechanism designed to address the class imbalance in
the ECG datasets. By leveraging logarithmic weighting and considering
the overall dataset distribution, it offers a nuanced approach to enhance
the model’s focus on underrepresented classes.

In summary, our contributions presented in this work are:

• Enhanced Spatial Recognition: We develop a deep learning
framework that adeptly identifies and captures intricate spatial
patterns within ECG signals across various scales, leading to
improved detection of subtle arrhythmia signatures.

• Holistic Feature Interactivity: We implemented a recalibra-
tion mechanism that bridges the gap between spatial and tem-
poral dimensions, ensuring the model fully capitalizes on the
interdependencies among the extracted features.

• Robust Temporal Processing and Imbalance Addressing: We
introduce a bidirectional Transformer to model both past and
future temporal contexts in ECG data, coupled with a Context-
Aware loss function designed to optimize focus on underrepre-
sented classes, elevating overall classification efficacy.

• Empirical Validation: We conduct extensive experiments on two
real-world ECG arrhythmia classification datasets, and the results
underscore the superiority of our proposed model over existing
methods.

2. Related work

ECG arrhythmia classification has gained significant attention in
recent years, as evidenced by a number of recent works [10]. A key
challenge in ECG arrhythmia classification is the extraction of meaning-
ful features from ECG signals. This task can be approached through two
primary methods: one entails the use of manually designed features in
combination with traditional machine learning techniques like Random
Forest (RF) [11] and Support Vector Machine (SVM) [12], while the
other employs deep learning methods for automatic feature extraction.
Next, we will delve into the exploration of hand-crafted feature tech-
niques for ECG arrhythmia classification (Section 2.1) and investigate
deep learning methods (Section 2.2).

2.1. Machine learning methods

Traditional approaches to ECG arrhythmia classification have pri-
marily relied on handcrafted feature extraction techniques, with clas-
sifiers like Support Vector Machines (SVM) being employed to discern
different arrhythmias. For instance, Majeed et al. [13] extracted time
domain and frequency domain features obtained through an optimized
2

Triple Band filter bank. Then, they selected the most discriminative
features and fed to three classifiers: Least Square Support Vector Ma-
chine (LS-SVM), K-means, and K-nearest, where the LS-SVM achieved
the best results. Also, Qin et al. [12] extracted low-dimensional ECG
beat feature vectors using wavelet multi-resolution analysis. Following
that, they used principal component analysis (PCA) to reduce features’
dimensionality and input to an SVM.

In addition, Zabihi et al. [14] detected atrial fibrillation (AF) rhythm
by extracting 491 hand-crafted features from time, frequency, and
time–frequency domains. Those are then filtered to 150 features with
a feature ranking procedure to be fed into an RF classifier. Similarly,
Rouhi et al. [11] proposed an interpretable method that extracts hand-
crafted features, and then selects the best of them for the RF classifier.
Last, Wany et al. [15] extracted local and global characteristics based
on clinical diagnosis, morphology features, and statistical features.
Those were reduced with PCA and sent to an RF classifier.

While these methods have demonstrated efficacy, their reliance on
hand-engineered features and manual feature selection could limit their
capacity to adapt to diverse and intricate ECG patterns, necessitating
more adaptive and automated feature extraction techniques. Conse-
quently, more attention was shifted towards the deep learning methods
that showed a capacity to automatically learn intricate patterns from
raw ECG data

2.2. Deep learning methods

2.2.1. Automatic convolutional feature extraction
With the evolution of deep learning, there has been a surge in

using neural networks for ECG arrhythmia classification. Convolu-
tional neural networks (CNNs) have been the most popular architecture
to use, because of their ability to automatically extract salient fea-
tures from raw ECG signals and capture discriminative patterns. Zhi
et al. [16] deployed a 1D residual CNN based on the ResNet archi-
tecture. By integrating two-way ECG signals with deep learning, they
could differentiate between five heart rhythm classes. Building upon
such frameworks, Srivastava et al. [17] unveiled a residual inception
model enhanced by channel attention (RINCA). Their method empha-
sizes the importance of sequence segments and dominant channels in
the classification of multi-lead ECG signals. Similarly, Kim et al. [18]
amalgamated a residual network, squeeze-and-excitation block, and
bidirectional Long-Short Term Memory (LSTM).

Some methods integrated CNN with wavelets to improve the feature
extraction. For example, El Bouny et al. [19] amplified the extrac-
tion capabilities by introducing a Multi-Level Wavelet Convolutional
Neural Network. This method synergizes 1D-CNN models with the
Stationary Wavelet Transform to glean features from varied ECG sig-
nal scales. Houssein et al. [20] further propelled this idea by au-
tonomously optimizing the CNN’s hyper-parameters and using diverse
feature extraction techniques directly on raw ECG signals.

Moreover, CNNs have been incorporated with other techniques
to enhance performance. For instance, Hammad et al. [21] dove-
tailed deep neural networks with a genetic algorithm. Meanwhile,
Al-Hadhrami et al. [22] ventured into a 2D-CNN domain using the
DenseNet model, underscoring the adaptability of convolutional frame-
works. On a parallel note, Nurmaini et al. [23] manifested the har-
mony between stacked denoising autoencoders and deep neural net-
works, elucidating the multifaceted nature of neural architectures in
this domain.

While a myriad of CNN-based architectures has showcased promis-
ing results, a gap exists in the extraction of multi-scale patterns, as well
as the attention to the discriminative features. Our approach, meld-
ing Multi-scale Convolutions with a Channel Recalibration Module,
aims to address these challenges for a better arrhythmia classification

performance.
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Fig. 1. A schematic diagram to the proposed framework ECGTransForm for ECG arrhythmia classification. The framework consists of a Multi-scale Convolutions module to capture
spatial features at different scales. Following that, a Channel Recalibration Module highlights the interdependencies across channels. Next, we design a bidirectional Transformer
module to learn efficient past and future temporal information. Last, we propose a Context-Aware Loss function to improve the model resilience to the class imbalance in ECG
datasets.
2.2.2. Temporal dynamics and sequential models
The intrinsic temporal nature of ECG signals necessitates more focus

on their temporal dynamics, leading to exploring sequential models,
e.g., LSTMs and attention mechanisms.

Many studies integrated the power of CNNs with sequential models,
as manifested in [24], where they fused CNNs with Recurrent Neural
Networks (RNNs) for adept segmentation and classification of diverse
cardiac rhythms from ECG recordings. Nevertheless, LSTM showed
proficiency in learning temporal dynamics. Gao et al. [25] embarked
on the LSTM frontier, proposing a model bolstered by focal loss, which
disentangled time–space features and addressed category imbalance.
In a similar vein, Mousavi et al. [26] amplified deep CNNs with
sequence-to-sequence models to accentuate temporal insights. Adding
another dimension, Jin et al. [27] conceived the dual-level attentional
convolutional LSTM neural network to improve model interpretability.

Attention mechanisms, renowned for zeroing in on salient features,
found their application in the works of Zhao et al. [28], who instituted a
dual-channel CNN with such a mechanism. Similarly, Zhang et al. [29]
presented a model that harnesses attention mechanisms across both
spatial and temporal spectrums. The Transformer architecture was not
to be left behind. As delineated by Xia et al. [30], a lightweight
Transformer integrated with a CNN and a denoising autoencoder serves
to amplify minority class performance, employing a unique seq2seq
approach that bridges local and global ECG features.

While these models have made strides in temporal feature extrac-
tion, the bidirectional context provided by our proposed BiTrans show-
cases the potential for even more nuanced temporal understandings,
especially when considering both past and future contexts.

2.2.3. Addressing class imbalance in ECG datasets
The skewed distribution of arrhythmia classes in many ECG datasets

poses a challenge in achieving accurate and robust arrhythmia de-
tection. Over the years, several strategies have emerged in the liter-
ature to counteract this imbalance and ensure fair representation of
underrepresented classes.

Modifying loss functions has been one approach to place more
emphasis on minority classes during training. Gao et al. [25] used an
LSTM model complemented with a focal loss, specifically designed to
handle imbalances by assigning more importance to hard-to-classify
instances. Similarly, Lu et al. [8] incorporated focal loss into a depth-
wise separable CNN to counteract dataset skews. In addition, data
augmentation has been another effective strategy. Ma et al. [31] tackled
this by employing generative adversarial networks to artificially gen-
erate instances of sparse arrhythmia classes via a fusion model based
on ResNet and BiLSTM. Furthermore, Peng et al. [32] employed the
synthetic minority oversampling technique (SMOTE) to synthesize new
minority sample ECG signals, emphasizing its capability to alleviate the
detrimental effects of data imbalance on classification.

In light of these strategies, there still exists a quest for an optimal
balance between model performance and sensitivity to minority classes.
It is within this context that our Context-Aware Loss (CAL) component
is introduced, aiming to offer a more nuanced and effective solution to
the persistent challenge of class imbalance in ECG datasets.
3

Fig. 2. The architecture of the multi-scale Convolutions module. Convolution Blocks 2
and 3 have the same structure, consisting of a convolutional layer followed by a Batch
Normalization and MaxPooling layers.

3. Proposed methodology

3.1. Overview

In this section, we provide a comprehensive overview of the pro-
posed framework ECGTransForm. The overall design of the proposed
framework is depicted in Fig. 1. Our methodology comprises three core
components, i.e., the Multi-scale Convolutions, the Channel Recalibra-
tion Module, and the Bidirectional Transformer. In addition, we include
a Context-aware Loss function to address the class imbalance. Each
component is designed to address specific limitations in the existing
literature and contribute to the overall enhancement of arrhythmia
classification performance. Next, we detail the design and functionality
of each component, highlighting their synergistic interactions within
the framework.

3.2. Multi-scale convolutions

The Multi-scale Convolutions (MSC) component is designed to cap-
ture spatial features within the ECG signal at various scales. The
core concept involves employing multiple convolutional layers, each
equipped with a distinct kernel size. Our objective is to enable the
model to identify patterns across different spatial ranges, thereby en-
hancing the model’s ability to capture both fine-grained and broader
patterns inherent in arrhythmia-related ECG signals. The convolutional
layers with small kernel sizes focus on capturing local details and fine-
grained features in the input data. In contrast, the layers with larger
kernel sizes gradually expand the receptive field, enabling the model
to grasp more significant patterns and relationships between features.
This operation is summarized in Fig. 2.

Formally, let 𝑘 = 𝑘1, 𝑘2,… , 𝑘𝑙 represent the set of 𝑙 kernel sizes
employed in the MSC component. Here, each 𝑘𝑖 is associated with a
particular scale such that 𝑘𝑖 corresponds to capturing patterns within
a temporal range of 𝑠𝑖 milliseconds. For input ECG samples 𝑥 =
(𝑥1, 𝑥2,… , 𝑥𝑚), where 𝑥𝑖 is a univariate or multivariate sample and 𝑚
is the number of samples, the output of the 𝑖-th convolutional layer 𝐶𝑖
with kernel size 𝑘𝑖 can be formulated as: 𝐶𝑖 = Conv(𝑥, 𝑘𝑖, 𝑝𝑖), where 𝑝𝑖
represents the padding required to balance the output of the multi-scale
convolutional layers.
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𝑥

Fig. 3. The design of the Channel Recalibration Module..

Subsequently, the features extracted from each convolutional layer
are averaged element-wise to obtain a fused representation of multi-
scale information:

̂ = 1
𝑙

𝑙
∑

𝑖=1
Conv(𝑥, 𝑘𝑖, 𝑝𝑖), (1)

where 𝑙 is the number of convolutional layers in the MSC component,
𝑘𝑖 represents the kernel size for the 𝑖th convolutional layer, and 𝑝𝑖
represents the padding for the 𝑖th convolutional layer. Notably, we
experimented with different techniques, but averaging showed the best
performance (see supplementary materials).

While being followed by subsequent layers, i.e., convolutional,
batch normalization, max-pooling, and dropout operations, the integra-
tion of multi-scale convolutional layers at the forefront is of paramount
significance. The initial multi-scale convolutional layers function as
feature preprocessors, extracting essential patterns that reflect physi-
ological phenomena. This preprocessing enhances the effectiveness of
downstream layers, which can then focus on refining and aggregating
these features. Upon passing through the other convolutional blocks,
the final output feature map �̂� = (�̂�1, �̂�2,… , �̂�𝑚) is sent to the subsequent
layer.

3.3. Channel recalibration module

The Channel Recalibration Module (CRM), inspired from [9], stands
as a significant component towards an adaptive recalibration of
channel-wise feature responses, with an explicit focus on modeling in-
terdependencies among channels based on global context information.
This component improves the model’s capacity to discern and leverage
complex relationships between different lead channels.

While the prior component in our framework, i.e., the MSC, primar-
ily enhances the spatial features within the ECG signal, the CRM intro-
duced another perspective, i.e., recalibrating channel-wise features, to
enhance the quality of channel-based encodings across the hierarchy of
features. This module undertakes the fusion of spatial and channel-wise
information at each layer. In addition, the recalibration process adds
the capability to discern and amplify channel-specific patterns that hold
pivotal significance for accurate arrhythmia classification.

As we delve into the mechanics of the Channel Recalibration Mod-
ule, its relationship with the other components of our framework
becomes evident. Specifically, while the Multi-scale Convolutions mod-
ule focuses on capturing and emphasizing the spatial nuances within
the ECG signals, the Channel Recalibration Module refines these spatial
4

Fig. 4. The architecture of the Bi-directional Transformer module.

features by optimizing channel-wise patterns. This integrated approach
ensures that both spatial and channel-wise features are adequately ad-
dressed, thereby enabling the model to effectively differentiate between
various arrhythmia classes.

Fig. 3 provides an illustration of the mechanism of the Channel
Recalibration Module’s operation. We deploy an initial convolutional
layer to further refine and prepare the feature maps generated by the
preceding MSC module for channel-wise recalibration, such that �̂�𝑐𝑜𝑛𝑣 =
𝐶𝑜𝑛𝑣(�̂�).

Next, we squeeze the spatial dimensions of the convolutional fea-
ture maps into a channel-wise descriptor by applying global average
pooling. This reduces the feature maps into a vector of channel-wise
statistics that capture the information across the entire spatial extent.
Formally, this operation can be represented as follows:

𝑧 = 𝐹𝑎𝑣𝑔(�̂�𝑐𝑜𝑛𝑣) =
1

𝐻 ×𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
�̂�𝑖,𝑗𝑐𝑜𝑛𝑣, (2)

where 𝐹𝑎𝑣𝑔 is an adaptive average pooling layer, 𝐻 and 𝑊 are the di-
mensions of the convolutional feature maps �̂�, and 𝑧 is the channel-wise
descriptor obtained through global average pooling.

In the next step, the channel-wise descriptor is fed into a small
neural network consisting of fully connected layers. These layers act as
excitation towards learning to model the inter-dependencies between
different channels and capturing the importance of each channel. The
network consists of a bottleneck layer followed by a gating ReLU acti-
vation function to limit model complexity and facilitate generalization.
This layer is followed by another fully connected layer with a sigmoid
activation that produces values between 0 and 1, indicating the degree
of emphasis each channel should receive. The output of the network
represents the channel-wise importance scores. These operations can
be expressed as follows:

𝑠 = 𝜎(2𝛿(1(𝑧))), (3)

where 𝑠 denotes the channel-wise importance scores, 1 and 2 repre-
sent the fully connected layers, 𝜎 is the sigmoid activation function, and
𝛿 is the ReLU activation function. It is worth noting that the sigmoid
function was chosen to allow simultaneous emphasis on multiple ECG
channels, while the ReLU function, used in the gating mechanism’s
bottleneck structure, aids in reducing model complexity and enhancing
generalization.

The channel-wise importance scores 𝑠 are then used to recalibrate
the original feature maps �̂� as follows:

𝑓 = 𝑠 ⊙ �̂� ∈ R𝑁×𝑑 , (4)
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where ⊙ denotes element-wise multiplication and 𝑓 is the calibrated
eature map with new dimensions, i.e., 𝑁 indicating the number of
hannels and 𝑑 indicating the feature length. By incorporating these
perations, our model can dynamically recalibrate the importance of
eatures, leading to improved performance on various tasks.

.4. Bidirectional transformer

Cardiac arrhythmias present intricate temporal patterns in ECG
ignals. These patterns, which can be subtle variations in the ECG
aveform, manifest not just from previous cardiac cycles but can also
e indicative of upcoming irregularities. Thus, capturing bidirectional
emporal dependencies from both past and future contexts is pivotal to
aking accurate classifications.

The Transformer architecture, originally designed for sequence-
o-sequence tasks in natural language processing [33], is inherently
apable of modeling long-range dependencies in a sequence, limit-
ng their capacity to grasp intricate contextual features. Therefore,
e extend the Transformer network and introduce the Bidirectional
ransformer (BiTrans) to enhance the learned temporal relations in
he extracted features and harness information from both preceding
nd succeeding ECG waveforms. Considering that the input to the Bi-
rans is the extracted feature map from previous layers, which encode
igh-level spatial information, they will serve as a valuable context
or the subsequent temporal relations learning task. Our Bidirectional
ransformer, inspired by bidirectional LSTM (bi-LSTM), introduces an

nversion mechanism to the feature map, generating an additional input
hat incorporates the reversed sequence of spatial information. This
s illustrated in Fig. 4. This allows it to simultaneously consider past
nd future contexts when predicting a specific position. By combining
utputs from both directions, our approach achieves a richer contex-
ual understanding, effectively capturing intricate relationships within
he input sequence. This is different from the standard Transformer
ncoder, which primarily focuses on the context leading up to a current
osition in the input sequence, neglecting the subsequent positions.

Formally, the self-attention mechanism is applied to the input,
hich consists of three duplicates of the same feature set 𝑓 . This input

is linearly projected into query, key, and value matrices for each head:

𝑓ℎ
𝑄 = 𝑊 ℎ

𝑄 ⋅ 𝑓, 𝑓ℎ
𝐾 = 𝑊 ℎ

𝐾 ⋅ 𝑓, 𝑓ℎ
𝑉 = 𝑊 ℎ

𝑉 ⋅ 𝑓, (5)

here 𝑓ℎ
𝑄, 𝑓ℎ

𝐾 , and 𝑓ℎ
𝑉 are the query, key, and value matrices for the

th head. Also, 𝑊 ℎ
𝑄 , 𝑊 ℎ

𝐾 , and 𝑊 ℎ
𝑉 are learnable projection matrices for

he ℎth head.
The self-attention mechanism for each head is then applied as

ollows:

ℎ = Attention(𝑓ℎ
𝑄, 𝑓

ℎ
𝐾 , 𝑓

ℎ
𝑉 ) = softmax

(

𝑓ℎ
𝑄(𝑓

ℎ
𝐾 )

𝑇

√

𝑑𝑘

)

𝑓ℎ
𝑉 , (6)

where 𝑑𝑘 is the dimension of 𝑓ℎ
𝐾 for the ℎth head.

The multi-head attention mechanism is obtained by concatenating
the results from all 𝐻 heads and applying another linear projection to
obtain the final multi-head attention output:

MHA(𝑓, 𝑓 , 𝑓 ) = Concat(𝐴1,… , 𝐴𝐻 ) ⋅𝑊𝑂 , (7)

where MHA(𝑓, 𝑓 , 𝑓 ) represents the multi-head self-attention output,
and 𝑊𝑂 is the output projection matrix for the final multi-head atten-
tion output.

The key innovation in the Bidirectional Transformer network is
incorporating bidirectional attention. To achieve this, we reverse the
input feature map to take into account both past and future tokens, as
follows.

𝑓𝑟𝑒𝑣[𝑖, 𝑗] = 𝑥[𝑖, 𝑑 − 𝑗 − 1] (8)

for 𝑖 = 0, 1,… , 𝑁 − 1 and 𝑗 = 0, 1,… , 𝑑 − 1. Following that, we
apply the reversed input to Eqs. (6) and (7) once again. Last, we add
5

the outputs of the original feature map and its reversed counterpart as
follows.

𝐹𝑜𝑢𝑡 = MHA(𝑓, 𝑓 , 𝑓 ) + MHA(𝑓𝑟𝑒𝑣, 𝑓𝑟𝑒𝑣, 𝑓𝑟𝑒𝑣) (9)

In general, the encoder is composed of a stack of 𝐿 identical layers.
Each layer has two sub-layers, i.e., the multi-head self-attention mech-
anism, and the fully connected feed-forward network. Therefore, the
above operations are being performed 𝐿 times. Each layer in this stack
equentially processes the input data 𝑓 , i.e., Layer𝑖 includes operations
epresented by Eqs. (5) through (9), capturing increasingly abstract
nd contextualized representations. In this way, the relationships and
ependencies within the input are learned hierarchically.

The output of each layer in the Bidirectional Transformer serves as
he input to the subsequent layer, allowing for the gradual extraction
f complex patterns. The final output of the Bidirectional Transformer
etwork, which we denote as BiTrans(𝑓 ), emerges by successively
pplying each layer to the initial input 𝑓 . In essence, it can be expressed
s:

iTrans(𝑓 ) = Layer𝐿(Layer𝐿−1(… (Layer1(𝑓 ))…))

.5. Classification layer

.5.1. Classifier
The classifier, as depicted in Fig. 1, serves as the final decision-

aking component. Its primary role is to take the feature representa-
ions extracted from the earlier components of our system and make
redictions regarding the presence or absence of ECG arrhythmias.
hese feature vectors encapsulate the essential information extracted
rom the input ECG signals, capturing both fine-grained and multi-
cale patterns. The role of the classifier is to analyze these feature
ectors and determine which class or category the input ECG signal
elongs to. In our implementation, the classifier is implemented as a
ingle fully connected layer. The simple implementation decreases the
odel complexity and hence avoids overfitting, and it was found to

e effective in capturing the discriminative information present in the
eature vectors.

.5.2. Context-aware loss
ECG data often encounters class imbalance issues due to the dispro-

ortionate presence of different cardiac arrhythmias. This imbalance
oses a significant challenge for deep learning models, as they favor
ajority classes, i.e., the normal class, leading to suboptimal perfor-
ance in accurately identifying rare events, i.e., the disease classes. The

raditional method of assigning class weights in the cross-entropy loss
ypically involves directly inverting the class frequencies or normaliz-
ng them to ensure minority classes get more weight. However, this can
ometimes lead to extremely high weights for very rare classes, which
ight cause the model to overfit these classes.

To overcome this limitation, we present the Context-Aware Loss
CAL). Inspired by [34], CAL provides a mechanism to handle class
mbalance by assigning dynamic weights to each class based on their
revalence in the dataset. The weights are computed with three consid-
rations. The first is incorporating the overall context. Instead of merely
nverting the frequencies of classes, CAL considers the ratio of the total
amples to the class with the maximum samples. This ensures that the
eights are derived in the context of the overall dataset distribution.
he second is logarithmic weighting, which aims to dampen the effect
f extreme values, thus preventing overly high or low weights. This can
e particularly useful to strike a balance between emphasizing minority
lasses and not causing overfitting. Last is flooring the weights by
nsuring that the minimum weight is 1. In this way, we avoid assigning
oo low weights to any class, ensuring that all classes are considered by
he model.

Given a dataset with 𝐶 classes, let 𝑛𝑖 represent the number of
amples of class 𝑖, and  be the total number of samples in the dataset,
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𝑖=1 𝑛𝑖. The class with the maximum number of samples can
e represented as 𝑛𝑚𝑎𝑥 = max𝑖 𝑛𝑖. We define the parameter 𝜇 as the

inverse ratio of the total samples to the class with the maximum number
of samples, i.e., 𝜇 = 𝑛𝑚𝑎𝑥

 .
For each class 𝑖, the weight 𝑤𝑖 is computed as:

𝑤𝑖 = log(𝜇 ×∕𝑛𝑖). (10)

However, we floor 𝑤𝑖 if it is found to be less than 1, as follows:

𝑤𝑖 = max(1, log(𝜇 ×∕𝑛𝑖)). (11)

This weight is then used to modify the cross-entropy loss, amplifying
the loss contribution of under-represented classes, as follows.

𝐶𝐴𝐿 = −
𝐶
∑

𝑖=1
𝑤𝑖𝑦𝑖 log(�̂�𝑖). (12)

4. Experiment setup

4.1. Datasets

Our proposed method is tested on two real-world datasets: the MIT-
BIH arrhythmia database [35] and the PTB Diagnostic ECG
Database [36]. These datasets are diverse in various aspects, which
demonstrates the generality of our method.

4.1.1. MIT-BIH arrhythmia database
The MIT-BIH arrhythmia database [35] is a widely used dataset

for research in arrhythmia detection and classification. The dataset
contains 48 half-hour ECG recordings obtained from 47 subjects, with
a total of over 110,000 individual beats annotated by a panel of
cardiologists. The annotated beats are classified into 16 types of ar-
rhythmias, including premature ventricular contractions (PVCs), atrial
fibrillation (AF), and other less common types. The recordings have
a sampling rate of 360 Hz and are digitized with 11-bit resolution.
The dataset has been instrumental in the development and evaluation
of various algorithms for arrhythmia detection and classification, and
its availability has facilitated the advancement of research in the field
of cardiac arrhythmia analysis. The MIT-BIH dataset consists of five
distinctive classes. These classes are: (1) Normal Sinus Rhythm (N)
representing the normal heart rhythms, (2) Supraventricular Premature
or Ectopic Beat (S), which includes abnormal beats that originate
above the ventricles, typically in the atria, (3) Ventricular Premature
r Ectopic Beat (V), which represents abnormal beats that originate in
he ventricles, (4) Fusion of Ventricular and Normal Beat (F), which
ndicates beats that are a combination of normal sinus rhythm and
bnormal ventricular rhythms, (5) Unknown Beats (Q), which is used
or beats that cannot be confidently categorized into any of the specific
lasses mentioned above.

.1.2. The PTB diagnostic ECG database
The PTB Diagnostic ECG Database [36] is a publicly available

ataset of ECG recordings that were collected at the Department of
ardiology, University Hospital Bonn, Germany. The dataset includes
,388 ECG recordings from 549 patients, which were acquired using a
2-lead system with a sampling frequency of 1,000 Hz and a resolution
f 16 bits. The recordings were collected from patients with various
ardiac diseases, such as myocardial infarction, cardiac hypertrophy,
nd arrhythmia. This dataset consists of two classes: normal and ab-
ormal ECG recordings. In addition to the ECG recordings, the dataset
lso includes diagnostic labels for each recording, which were assigned
y expert cardiologists based on the clinical diagnosis of the patient.

The PTB dataset consists of two main classes, i.e., (1) Normal
N), which represents normal ECG recordings, and (2) the Myocardial
nfarction (M), which represents ECG recordings that exhibit signs of
yocardial infarction, indicating the presence of a heart attack.

In addition, Table 1 presents a detailed description of the number
f samples in each class for both datasets.
6

Table 1
The detailed description of adopted datasets.

Database MIT-BIH Arrhythmia PTB diagnostic ECG

Classes N S V F Q Total N M Total

Training 72 471 2223 5788 641 6431 87554 3236 8400 11636
Testing 18 118 556 1448 162 1608 21892 809 2100 2909

4.1.3. Datasets preprocessing:
The preprocessing of ECG signals plays a pivotal role, as these

signals serve as the primary input. To enhance the efficiency of our
approach, we applied the following preprocessing procedure for ECG
signals and the subsequent extraction of cardiac beats, following [37].
These steps are as follows:

1. Segmentation of ECG Signal: The continuous ECG signal is initially
segmented into discrete 10-second windows, and a specific 10-
second window is selected from the ECG signal for further
processing.

2. Amplitude Normalization: The amplitude values within the chosen
window are normalized to fall within the range of zero to one,
ensuring uniformity in the representation of the ECG signal.

3. Identification of Local Maxima: The set of local maxima is deter-
mined by examining zero-crossings within the first derivative of
the signal.

4. Detection of R-Peak Candidates: An essential aspect of the pro-
cess involves identifying a set of ECG R-peak candidates. This
identification is achieved by imposing a threshold of 0.9 on the
normalized values associated with the local maxima.

5. Nominal Heartbeat Period Estimation: The median value of the R-
R time intervals is computed, serving as an estimation of the
nominal heartbeat period within the selected 10-second window.

6. Signal Fragment Selection: For each identified R-peak, a segment
of the signal with a length equal to 1.2 times the estimated
heartbeat period (1.2T) is selected.

7. Zero Padding : Each of the selected signal segments is zero-padded
to achieve a predefined and consistent fixed length.

4.2. Implementation details

The datasets were split into 80% for training and 20% for testing
to ensure a sufficient amount of data for both model training and eval-
uation. Further, extracting 20% of the training dataset for validation
allows for model hyperparameter tuning and ensures the generalizabil-
ity of the model. Experiments were repeated three times with three
different seeds to assess the stability and robustness of our model. The
average performance with standard deviation was reported to mitigate
any anomalies due to random initializations. The training epochs were
set to 60 based on empirical observations, where we noticed that the
model’s performance stabilized thereafter, indicating the convergence
of training. We used Adam optimizer with a learning rate of 1e−3 and
weight decay of 1e−4, and batch size of 128. The Adam optimizer
was chosen due to its adaptability and efficiency in deep learning
tasks, as seen in previous research. We set the learning rate to 1e−3
as this is a common starting point that balances training speed and
stability. The weight decay of 1e−4 helps prevent overfitting, ensuring
that weights do not grow disproportionately large. We selected a batch
size of 128. We assigned three convolutional layers (𝑙 = 3) based on
empirical observations which showed an ability to effectively capture
multi-scale features in ECG data. The chosen kernel sizes (𝑘1 = 5, 𝑘2 = 9,
and 𝑘3 = 11) span a range of scales, allowing the model to detect
patterns of various lengths in the ECG signal. A kernel size of 8 was
empirically determined to be effective for subsequent convolutional
operations, providing a good balance between receptive field size and
computational efficiency. The number of layers (𝐿 = 3) and heads
(ℎ = 5) were chosen based on their success in previous transformer-
based applications in related healthcare data [34]. The dropout value
of 0.5 is set to prevent overfitting, providing a balance between model

complexity and generalization capability.
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Table 2
The detailed results of ECGTransForm for each class for the MIT-BIH dataset.

Metric Per-class performance Macro-Avg

N S V F Q

Precision 99.36±0.09 91.67±2.20 95.74±1.46 91.30±5.32 99.30±0.27 95.47±1.59
Recall 99.46±0.27 86.91±2.35 97.65±0.17 82.68±3.88 99.06±0.04 93.15±1.16
F1-score 99.41±0.08 89.22±0.22 96.69±0.72 86.78±1.22 99.18±0.15 94.26±0.28
Table 3
The detailed results of ECGTransForm for each class for the
PTB Diagnostic ECG dataset.

Metric Per-class performance Macro-Avg

N M

Precision 98.96±0.08 99.74±0.06 99.35±0.04
Recall 99.32±0.17 99.59±0.03 99.46±0.08
F1-score 99.14±0.08 99.67±0.03 99.41±0.05

4.3. Evaluation metrics

To evaluate our models, we adopted four performance metrics
that reflect the model’s ability to classify samples correctly. The first
metric is accuracy (ACC), which is a widely used evaluation metric in
classification tasks. It measures the proportion of correctly classified
samples among all samples, and can be calculated as follows:

ACC = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

,

where TP, TN, FP, and FN represent the True Positive, True Negative,
False Positive, and False Negative respectively.

However, since the datasets are imbalanced, reporting only the
accuracy will not be representative of the true performance of the
model. Therefore, we adopted the macro average F1-score (MF1) to
highlight the performance of imbalanced datasets. MF1 calculates the
weighted harmonic mean of precision and recall for each class, as
follows:

MF1 = 1
𝐶

𝐶
∑

𝑖=1

2 ⋅ 𝑇𝑃𝑖
2 ⋅ 𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

,

here C is the number of classes.
Additionally, we included two more metrics, i.e., Precision and

ecall. Precision measures the accuracy of positive predictions. It is
he ratio of true positive predictions to the total positive predictions.
he equation for Precision is as follows: Precision = 𝑇𝑃

𝑇𝑃+𝐹𝑃 . Recall
easures the ability of the model to identify all relevant instances.

t is the ratio of true positive predictions to the total actual positive
nstances. The equation for Recall is as follows: Recall = 𝑇𝑃

𝑇𝑃+𝐹𝑁 .

5. Results

In the results section, we present the outcomes of various ex-
periments that assess the performance of our model using different
configurations.

5.1. Performance analysis: In-depth examination

The performance analysis of our proposed model reveals remarkable
classification accuracy across various arrhythmia classes. Table 2 pro-
vides a comprehensive breakdown of the model’s precision, recall, and
F1-score for each class on the MIT-BIH dataset, offering an in-depth un-
derstanding of its ability to accurately classify ECG arrhythmias. Class
𝑁 and Q notably stand out with exceptionally high Precision, Recall,
and F1-scores, nearing a perfect score of 100%. The strong capability of
ECGTransForm in correctly classifying these classes can be attributed
7

to the high number of samples for class 𝑁 and the distinctiveness of
class Q. The Ventricular Premature or Ectopic Beat (V) also displays a
high precision rate of 95.74%, reinforcing the model’s adeptness in cap-
turing and distinguishing even the complex ventricular arrhythmias. In
contrast, classes S and F achieve lower performance than other classes.
This can be regarded to the ambiguity of these classes. Specifically,
class F represents fusion beats, which are a combination of normal and
abnormal rhythms. Detecting these accurately can be challenging, as
they may not fit neatly into either category, leading to mislabeling or
ambiguity in the dataset [38]. In addition, fusion beats can vary widely
among individuals and even within the same individual over time [39].
Similarly, Class S may include various subtypes of supraventricular
arrhythmias, some of which might be more challenging to classify [40].

Table 3 also shows the analysis of the ECGTransForm performance
on the PTB dataset. Our model demonstrates high performance across
both classes in this dataset. For class N, the precision and recall stand
at 98.96% and 99.32%, respectively, indicating an almost impeccable
classification capability. Class M goes a step further with a near-perfect
precision score of 99.74% and a recall rate of 99.59%. These values
suggest that the model makes extremely accurate predictions for both
classes while also capturing almost all the true positive instances.
The near-perfect macro-average scores underscore the model’s superior
capability in generalizing and accurately classifying ECG data from the
PTB Diagnostic ECG dataset.

5.2. Comparative study: Benchmarking against established baseline models

The comparative evaluation of our proposed framework against
the state-of-the-art baseline methods reveals some insights about the
performance of our framework. The results of this study are presented
in Table 4, which shows a diversity in terms of methodologies be-
ing employed for ECG-based arrhythmia classification. Examining the
performance metrics, our ECGTransForm model outperforms all the
baselines with an accuracy of 99.35% and an MF1 score of 94.26%.
This indicates that the integration of various advanced methods into
a single framework contributes to the higher discriminative capability
and effective arrhythmia classification. The closest competitors are the
works of Nurmaini et al. (2020) [23] and Kim et al. (2022) [18]. Even
though their accuracy is marginally below our framework, it is note-
worthy that they both surpass 99%. However, their MF1 scores, while
being commendable, still lag behind our method by approximately 2–3
percentage points, revealing a significant improvement by our model.
This underlines the robustness of our framework in capturing complex
spatial and temporal arrhythmia patterns, surpassing a method that
incorporates competing components.

Furthermore, our model’s performance exceeds the results of
Pokaprakarn et al. [24], who utilized Seq2Seq and CRNN for clas-
sification. Similarly, our ACC and MF1 outperform Hammad et al.
(2020) [21], and Jin et al. (2022) [27], showcasing the effectiveness
of our proposed framework against diverse methods. The presented
comparative study substantiates our model’s position at the forefront
of ECG arrhythmia classification methodologies.

Compared to these baselines, our model presents several advantages
from the architectural perspective. Unlike Seq2Seq models, primarily
designed for sequence-to-sequence tasks like machine translation, our
model is purpose-built for classification, capturing long-term depen-
dencies regardless of sequence order with its bidirectional nature.

Compared to LSTM-based models, the BiTrans structure in our model
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Table 4
Comparison of our proposed framework against baseline methods on MIT-BIH dataset.

Baseline Method ACC MF1

Hammad et al. (2020) [21] ResNet + LSTM + GA 98.00 89.70
Nurmaini et al. (2020) [23] AE + DNN 99.34 91.44
Kim et al. (2022) [18] ResNet+ SE block + biLSTM 99.20 91.69
Pokaprakarn et al. (2022) [24] Seq2Seq + CRNN 97.60 89.00
Jin et al. (2022) [27] DLA + CLSTM 88.76 80.54
Xia et al. (2023) [30] AE + Transformer 97.66 Nan
ECGTransForm (Ours) MSC + CRM + BiTrans + CAL 99.35±0.16 94.26±0.28
Fig. 5. Ablation study to the effect of each component on the performance.

not only grasps complex temporal patterns from both past and future
contexts but also offers faster parallel processing and addresses the
vanishing gradient challenge prevalent in lengthy sequences. Differing
from Auto-encoders (AE), which focus on data reconstruction, our
design prioritizes the extraction of discriminative features, employing
Multi-scale Convolutions and the Channel Recalibration Module for
optimal representation. Additionally, it streamlines the learning process
with end-to-end training. When set against the ResNet architecture,
our model excels in extracting features at diverse scales, accentuating
channel-wise interactions, and potentially achieving high performance
with lesser complexity, underscoring its efficiency and effectiveness for
the task at hand.

5.3. Component analysis: Ablation study and comprehensive insights

In our pursuit of dissecting the contributions of individual compo-
nents within our framework, we conducted an ablation study, detailed
in Fig. 5. We first show the performance of the traditional CNN model,
which consists of 3 consecutive convolution blocks as [41] (without
MSC module), to serve as a foundation for comparison. Notably, this
model has the lowest F1-score of 88.1%. With the introduction of the
Multi-scale Convolutions (MSC), the model’s performance witnesses
an uplift, as indicated by an improved F1-score to 90.4%. This en-
hancement underscores the significance of capturing multi-scale spatial
patterns within the ECG signals. Further, the Channel Recalibration
Module (CRM) enhances the model’s classification prowess, leading to
substantial improvements in F1-score by 0.9%. By dynamically fusing
channel-wise information, this module refines the model’s ability to
harness class-specific features.

Expanding upon this foundation, the integration of our proposed
Bidirectional Transformer (BiTrans) offers additional dimensions of
insight. In fact, it leads to a significant improvement in performance
by 2.35% if compared with the traditional Transformer, which only
improves the performance by 0.15%. This signifies the substantial effect
of leveraging future context information. The apex of our ablation
8

Fig. 6. Per-class F1-score performance for each class-imbalance handling method.

study culminates with the incorporation of Context-aware loss (CAL).
This component, tailored to address the class imbalance, brings forth a
remarkable boost in the F1-score, underscoring its efficacy in enhancing
classification across classes. The CAL mechanism’s ability to dynami-
cally adjust class weights based on context adds an invaluable layer of
refinement to our framework.

5.4. Addressing class imbalance: Evaluating context-aware loss

We evaluate our Context-Aware Loss (CAL) mechanism against
alternative data imbalance handling techniques, i.e., the oversampling
with SMOTE [42], the balanced sampling, weighted cross-entropy
loss [43], and focal loss [8].

The comparison in Fig. 6 provides a nuanced understanding of
the efficacy of CAL in mitigating class imbalance in ECG datasets
and enhancing classification performance. Notably, all the compared
methods can perform well on the majority class 𝑁 and the distinct
class Q with the F1-score surpassing 99%. The differences among these
methods are more notable in the relatively minor classes, i.e., F, V, and
S. Illustratively, examining class S provides an even more compelling
narrative. CAL yields an F1-score of 89.22%, substantially outperform-
ing the 74.84% of oversampling and the 64.15% of Balanced Sampler.
This difference can be attributed to CAL’s adaptability in capturing the
unique characteristics of minority classes.

Notably, we find that the balanced sampling technique, aimed at
refining the class distribution during training, demonstrates limited ef-
fectiveness, with an MF1 score of 81.84% and the worst performance on
the three minor classes. In addition, the oversampling approach, which
artificially increases the instances of minority classes, increases the
computational complexity and still exhibits comparably lower perfor-
mance. On the other hand, the weighted Cross-Entropy (CE) and Focal
Loss mechanisms, designed to assign different weights to classes, show-
case notable improvements, yet the superiority of CAL remains evident,

with MF1 differentials of 3.19% and 3.75% over them, respectively.
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Fig. 7. UMAP visualization of the features generated by ECGTransForm on MIT-BIH
dataset.

5.5. Visual insights: UMAP-based features visualization

Given the high dimensionality of the features extracted by our
model, it is essential to project these features onto a lower-dimensional
space to visualize them. UMAP [44] (Uniform Manifold Approximation
and Projection) offers an effective approach for this purpose, reducing
the feature dimensions while retaining the most meaningful structure.

The 2D UMAP plot shown in Fig. 7, represents the extracted features
from our model, just before the final classification layer. This ensures
that the features hold rich discriminative information learned through
the various layers. The figure reveals some notable remarks. First,
classes Q and V are more distinct in their ECG patterns and tend to
form well-separated clusters. In addition, the majority class 𝑁 also
forms a big cluster, but it overlaps with samples from other classes.
This confirms the capability of our model to effectively learn and
differentiate various arrhythmia types.

Counterpart, we find that the fusion beats (class F) may share
characteristics with other arrhythmias, such as ventricular ectopic beats
(Class V) or normal sinus rhythm (Class N). This overlap can lead to
misclassification, as the algorithm may struggle to distinguish between
them. Also, we notice that class S is more overlapping with class 𝑁
since supraventricular ectopic beats arise from the atria or the atrioven-
tricular junction, which is closer to the natural origin of the heartbeat
(the sinoatrial node) compared to ventricular beats. Therefore, the
waveforms might exhibit features that are more similar to normal
rhythms compared to beats originating from the ventricles.

6. Limitations and future work

Our model, while showcasing promising results, can still suffer from
some challenges. These can be considered as potential future works and
summarized as follows:

Detecting Specific Arrhythmias: A notable limitation is its strug-
gle with specific arrhythmia classes, particularly Fusion beats (Class F)
and Supraventricular Premature beats (Class S). Fusion beats present a
unique challenge due to their variable nature, resulting from the merg-
ing of natural and premature beats. Addressing this requires classifiers
capable of discerning such nuanced differences. Likewise, for Class S,
there might be underlying characteristics that our model has yet to
grasp fully.

Integrating Advanced ECG Metrics: We believe that several paths
can further improve our model’s performance and applicability. One
such avenue is the integration of additional features beyond the conven-
tional ECG waveform. Incorporating metrics like heart rate variability
or P-wave characteristics might offer a more comprehensive view of the
cardiac cycle.
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Optimizing Transformer Complexity: Another worthwhile consid-
eration is addressing the computational complexity of our Bidirectional
Transformer architecture. Leveraging pretrained modules could help in
reducing the number of trainable parameters, which can streamline the
training process, and facilitate faster deployment.

Strengthening Model Generalization: Finally, as the medical com-
munity continuously seeks models with broad applicability, future
efforts should be channeled towards ensuring our model’s robust gen-
eralization across diverse datasets (see supplementary materials). En-
hancing this generalization capability via techniques, e.g., unsupervised
domain adaptation [45,46], may provide pathways to bridge the distri-
butional gaps between datasets and enable more effective cross-domain
deployment.

7. Conclusions

In this work, we have presented a comprehensive solution to ECG
arrhythmia classification by introducing the ECGTransForm frame-
work, which emphasizes the power of bidirectional Transformers in
capturing intricate temporal relationships. Our approach departs from
conventional methods, targeting both the spatial and temporal intri-
cacies inherent in ECG signals. Key insights from this work include
the impact of our proposed Bidirectional Transformer (BiTrans) mecha-
nism, which allows for the effective extraction of temporal features by
harnessing the context from both past and future time instances. We
also showed the impact of the integration of Multi-scale Convolutions
and the Channel Recalibration Module in capturing varying scales of
features and their cross-channel interdependencies. Last, our Context-
Aware Loss (CAL) introduces a dynamic way to handle class imbalance,
ensuring that the model retains sensitivity towards underrepresented
classes. Visualization of the learned features, using techniques like
UMAP, further underscores the capability of our model in delineating
distinct arrhythmic classes, which is pivotal for practical applications.
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