def get_dataset_class(dataset_name):
"""Return the algorithm class with the given name."""
if dataset_name not in globals():
raise NotImplementedError("Dataset not found: {}".format(dataset_name))
return globals()[dataset_name]
class mit():
def __init__(self):
super(mit, self).__init__()
# data parameters
self.num_classes = 5
self.class_names = ['N', 'S', 'V', 'F', 'Q']
self.sequence_len = 186
# model configs
self.input_channels = 1
self.kernel_size = 8
self.stride = 1
self.dropout = 0.2
# features
self.mid_channels = 32
self.final_out_channels = 128
# Transformer
self.trans_dim = 25
self.num_heads = 5
class ptb():
def __init__(self):
super(ptb, self).__init__()
# data parameters
self.num_classes = 2
self.class_names = ['normal', 'abnormal']
self.sequence_len = 188
# model configs
self.input_channels = 1 # 15
self.kernel_size = 8
self.stride = 1
self.dropout = 0.2
# features
self.mid_channels = 32
self.final_out_channels = 128
# Transformer
self.trans_dim = 25
self.num_heads = 5