400 lines (399 with data), 13.1 kB
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Classification Analysis for ECG Time-Series\n",
"\n",
"> Copyright 2019 Dave Fernandes. All Rights Reserved.\n",
"> \n",
"> Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"> you may not use this file except in compliance with the License.\n",
"> You may obtain a copy of the License at\n",
">\n",
"> http://www.apache.org/licenses/LICENSE-2.0\n",
"> \n",
"> Unless required by applicable law or agreed to in writing, software\n",
"> distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"> WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"> See the License for the specific language governing permissions and\n",
"> limitations under the License."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Overview\n",
"This notebook classifies time-series for segmented heartbeats from ECG lead II recordings. Either of two models (CNN or RNN) can be selected from training and evaluation.\n",
"- Data for this analysis should be prepared using the `PreprocessECG.ipynb` notebook from this project.\n",
"- Original data is from: https://www.kaggle.com/shayanfazeli/heartbeat"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import tensorflow as tf\n",
"import tensorflow.keras.layers as keras\n",
"import matplotlib.pyplot as plt\n",
"import pickle\n",
"\n",
"tf.enable_eager_execution()\n",
"\n",
"TRAIN_SET = './Data/train_set.pickle'\n",
"TEST_SET = './Data/test_set.pickle'\n",
"\n",
"with open(TEST_SET, 'rb') as file:\n",
" test_set = pickle.load(file)\n",
" x_test = test_set['x']\n",
" y_test = test_set['y']\n",
"\n",
"with open(TRAIN_SET, 'rb') as file:\n",
" train_set = pickle.load(file)\n",
" x_train = train_set['x']\n",
" y_train = train_set['y']\n",
" \n",
"def parameter_count():\n",
" total = 0\n",
" for v in tf.trainable_variables():\n",
" v_elements = 1\n",
" for dim in v.get_shape():\n",
" v_elements *= dim.value\n",
"\n",
" total += v_elements\n",
" return total"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Input functions for Estimator"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def combined_dataset(features, labels):\n",
" assert features.shape[0] == labels.shape[0]\n",
" dataset = tf.data.Dataset.from_tensor_slices(({'time_series': features}, labels))\n",
" return dataset\n",
"\n",
"def class_for_element(features, labels):\n",
" return labels\n",
"\n",
"# For training\n",
"def train_input_fn():\n",
" dataset = combined_dataset(x_train, y_train)\n",
" return dataset.repeat().shuffle(500000).batch(200).prefetch(1)\n",
"\n",
"# For evaluation and metrics\n",
"def eval_input_fn():\n",
" dataset = combined_dataset(x_test, y_test)\n",
" return dataset.batch(1000).prefetch(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Define the models\n",
"#### Convolutional Model\n",
"* The convolutional model is taken from: https://arxiv.org/pdf/1805.00794.pdf\n",
"\n",
"Model consists of:\n",
"* An initial 1-D convolutional layer\n",
"* 5 repeated residual blocks (`same` padding)\n",
"* A fully-connected layer\n",
"* A linear layer with softmax output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"CNN_MODEL_DIR = './Models/CNN-Paper'\n",
"\n",
"def conv_unit(unit, input_layer):\n",
" s = '_' + str(unit)\n",
" layer = keras.Conv1D(name='Conv1' + s, filters=32, kernel_size=5, strides=1, padding='same', activation='relu')(input_layer)\n",
" layer = keras.Conv1D(name='Conv2' + s, filters=32, kernel_size=5, strides=1, padding='same', activation=None)(layer )\n",
" layer = keras.Add(name='ResidualSum' + s)([layer, input_layer])\n",
" layer = keras.Activation(\"relu\", name='Act' + s)(layer)\n",
" layer = keras.MaxPooling1D(name='MaxPool' + s, pool_size=5, strides=2)(layer)\n",
" return layer\n",
"\n",
"def cnn_model(input_layer, mode, params):\n",
" current_layer = keras.Conv1D(filters=32, kernel_size=5, strides=1)(input_layer)\n",
"\n",
" for i in range(5):\n",
" current_layer = conv_unit(i + 1, current_layer)\n",
"\n",
" current_layer = keras.Flatten()(current_layer)\n",
" current_layer = keras.Dense(32, name='FC1', activation='relu')(current_layer)\n",
" logits = keras.Dense(5, name='Output')(current_layer)\n",
" \n",
" print('Parameter count:', parameter_count())\n",
" return logits"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Recurrent Model\n",
"\n",
"Model consists of:\n",
"* Two stacked bidirectional GRU layers\n",
"* Two fully-connected layers\n",
"* A linear layer with softmax output\n",
"\n",
"Since the model operates on segmented heartbeat samples, we can use a bidirectional RNN because the whole segment is available for processing at one time. It is also a more \\\"fair\\\" comparison with the CNN."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"RNN_MODEL_DIR = './Models/RNN'\n",
"RNN_OUTPUT_UNITS = [64, 128]\n",
"\n",
"def rnn_model(input_layer, mode, params):\n",
" current_layer = tf.keras.layers.Masking(mask_value=0., input_shape=(187, 1), name='Masked')(input_layer)\n",
" \n",
" for i, size in enumerate(RNN_OUTPUT_UNITS):\n",
" notLast = i + 1 < len(RNN_OUTPUT_UNITS)\n",
" layer = tf.keras.layers.GRU(size, return_sequences=notLast, dropout=0.2, name = 'GRU' + str(i+1))\n",
" current_layer = keras.Bidirectional(layer, name = 'BiRNN' + str(i+1))(current_layer)\n",
"\n",
" current_layer = keras.Dense(64, name='Dense1', activation='relu')(current_layer)\n",
" current_layer = keras.Dense(16, name='Dense2', activation='relu')(current_layer)\n",
" logits = keras.Dense(5, name='Output', activation='relu')(current_layer)\n",
" \n",
" print('Parameter count:', parameter_count())\n",
" return logits"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Estimator setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Initial learning rate\n",
"INITIAL_LEARNING_RATE = 0.001\n",
"\n",
"# Learning rate decay per LR_DECAY_STEPS steps (1.0 = no decay)\n",
"LR_DECAY_RATE = 0.5\n",
"\n",
"# Number of steps for LR to decay by LR_DECAY_RATE\n",
"LR_DECAY_STEPS = 4000\n",
"\n",
"# Threshold for gradient clipping\n",
"GRADIENT_NORM_THRESH = 10.0\n",
"\n",
"# Select model to train\n",
"MODEL_DIR = CNN_MODEL_DIR\n",
"MODEL_FN = cnn_model\n",
"\n",
"def classifier_fn(features, labels, mode, params):\n",
" is_training = mode == tf.estimator.ModeKeys.TRAIN\n",
" input_layer = tf.feature_column.input_layer(features, params['feature_columns'])\n",
" input_layer = tf.expand_dims(input_layer, -1)\n",
"\n",
" logits = MODEL_FN(input_layer, mode, params)\n",
"\n",
" # For prediction, exit here\n",
" predicted_classes = tf.argmax(logits, 1)\n",
" if mode == tf.estimator.ModeKeys.PREDICT:\n",
" predictions = {\n",
" 'class_ids': predicted_classes[:, tf.newaxis],\n",
" 'probabilities': tf.nn.softmax(logits),\n",
" 'logits': logits,\n",
" }\n",
" return tf.estimator.EstimatorSpec(mode, predictions=predictions)\n",
"\n",
" # For training and evaluation, compute the loss (MSE)\n",
" loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)\n",
"\n",
" accuracy = tf.metrics.accuracy(labels=labels, predictions=predicted_classes, name='acc_op')\n",
" metrics = {'accuracy': accuracy}\n",
" tf.summary.scalar('accuracy', accuracy[1])\n",
"\n",
" if mode == tf.estimator.ModeKeys.EVAL:\n",
" return tf.estimator.EstimatorSpec(mode, loss=loss, eval_metric_ops=metrics)\n",
"\n",
" # For training...\n",
" global_step = tf.train.get_global_step()\n",
" learning_rate = tf.train.exponential_decay(INITIAL_LEARNING_RATE, global_step, LR_DECAY_STEPS, LR_DECAY_RATE)\n",
"\n",
" optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)\n",
" #optimizer = tf.contrib.estimator.clip_gradients_by_norm(optimizer, GRADIENT_NORM_THRESH)\n",
" \n",
" train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())\n",
" return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Train model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"feature_columns = [tf.feature_column.numeric_column('time_series', [187])]\n",
"\n",
"estimator = tf.estimator.Estimator(\n",
" model_fn=classifier_fn,\n",
" model_dir=MODEL_DIR,\n",
" params={\n",
" 'feature_columns': feature_columns,\n",
" })\n",
"\n",
"estimator.train(train_input_fn, steps=4000)\n",
"info = estimator.evaluate(input_fn=eval_input_fn)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Compute metrics"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sklearn.metrics as skm\n",
"import seaborn\n",
"\n",
"dataset_fn = eval_input_fn\n",
"\n",
"predictions = estimator.predict(input_fn=dataset_fn)\n",
"y_pred = []\n",
"y_prob = []\n",
"\n",
"for i, value in enumerate(predictions):\n",
" class_id = value['class_ids']\n",
" y_pred.append(class_id)\n",
" probabilities = value['probabilities']\n",
" y_prob.append(probabilities[class_id])\n",
"del predictions\n",
"\n",
"y_pred = np.array(y_pred)\n",
"y_prob = np.array(y_prob)\n",
"y_test = np.reshape(y_test, (len(y_test), 1))\n",
"\n",
"# Classification report\n",
"report = skm.classification_report(y_test, y_pred)\n",
"print(report)\n",
"\n",
"# Confusion matrix\n",
"cm = skm.confusion_matrix(y_test, y_pred)\n",
"seaborn.heatmap(cm, annot=True,annot_kws={\"size\": 16})\n",
"\n",
"y_prob_correct = y_prob[y_pred == y_test]\n",
"y_prob_mis = y_prob[y_pred != y_test]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Check probability estimates"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from astropy.stats import binom_conf_interval\n",
"\n",
"_, _, _ = plt.hist(y_prob, 10, (0, 1))\n",
"plt.xlabel('Belief')\n",
"plt.ylabel('Count')\n",
"plt.title('All Predictions')\n",
"plt.show();\n",
"\n",
"n_all, bins = np.histogram(y_prob, 10, (0, 1))\n",
"n_correct, bins = np.histogram(y_prob_correct, 10, (0, 1))\n",
"\n",
"f_correct = n_correct / np.clip(n_all, 1, None)\n",
"f_bins = 0.5 * (bins[:-1] + bins[1:])\n",
"\n",
"n_correct = n_correct[n_all > 0]\n",
"n_total = n_all[n_all > 0]\n",
"f_correct = n_correct / n_total\n",
"f_bins = f_bins[n_all > 0]\n",
"\n",
"lower_bound, upper_bound = binom_conf_interval(n_correct, n_total)\n",
"error_bars = np.array([f_correct - lower_bound, upper_bound - f_correct])\n",
"\n",
"plt.plot([0., 1.], [0., 1.])\n",
"plt.errorbar(f_bins, f_correct, yerr=error_bars, fmt='o')\n",
"plt.xlabel('Softmax Probability')\n",
"plt.ylabel('Frequency')\n",
"plt.title('Correct Predictions')\n",
"plt.show();"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}