|
a |
|
b/PreprocessECG.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"# Preprocessing for ECG Classification\n", |
|
|
8 |
"\n", |
|
|
9 |
"> Copyright 2019 Dave Fernandes. All Rights Reserved.\n", |
|
|
10 |
"> \n", |
|
|
11 |
"> Licensed under the Apache License, Version 2.0 (the \"License\");\n", |
|
|
12 |
"> you may not use this file except in compliance with the License.\n", |
|
|
13 |
"> You may obtain a copy of the License at\n", |
|
|
14 |
">\n", |
|
|
15 |
"> http://www.apache.org/licenses/LICENSE-2.0\n", |
|
|
16 |
"> \n", |
|
|
17 |
"> Unless required by applicable law or agreed to in writing, software\n", |
|
|
18 |
"> distributed under the License is distributed on an \"AS IS\" BASIS,\n", |
|
|
19 |
"> WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", |
|
|
20 |
"> See the License for the specific language governing permissions and\n", |
|
|
21 |
"> limitations under the License." |
|
|
22 |
] |
|
|
23 |
}, |
|
|
24 |
{ |
|
|
25 |
"cell_type": "markdown", |
|
|
26 |
"metadata": {}, |
|
|
27 |
"source": [ |
|
|
28 |
"Data can be downloaded from: https://www.kaggle.com/shayanfazeli/heartbeat\n", |
|
|
29 |
"\n", |
|
|
30 |
"- Randomly sample 100 of each class of time-series for the test set. This is just over 10% of the samples in the smallest class.\n", |
|
|
31 |
"- Remaining data is balanced for the training set by upsampling under-represented classes." |
|
|
32 |
] |
|
|
33 |
}, |
|
|
34 |
{ |
|
|
35 |
"cell_type": "code", |
|
|
36 |
"execution_count": null, |
|
|
37 |
"metadata": {}, |
|
|
38 |
"outputs": [], |
|
|
39 |
"source": [ |
|
|
40 |
"import numpy as np\n", |
|
|
41 |
"import pandas as pd\n", |
|
|
42 |
"import pickle\n", |
|
|
43 |
"\n", |
|
|
44 |
"CSV_1 = './Data/mitbih_train.csv'\n", |
|
|
45 |
"CSV_2 = './Data/mitbih_test.csv'\n", |
|
|
46 |
"\n", |
|
|
47 |
"TRAIN_SET = './Data/train_set.pickle'\n", |
|
|
48 |
"TEST_SET = './Data/test_set.pickle'\n", |
|
|
49 |
"\n", |
|
|
50 |
"raw_1 = pd.read_csv(CSV_1, header=None)\n", |
|
|
51 |
"raw_2 = pd.read_csv(CSV_2, header=None)\n", |
|
|
52 |
"raw = pd.concat([raw_1, raw_2], axis=0)\n", |
|
|
53 |
"\n", |
|
|
54 |
"shuffled = raw.sample(frac=1, axis=0)\n", |
|
|
55 |
"del raw\n", |
|
|
56 |
"del raw_1\n", |
|
|
57 |
"del raw_2\n", |
|
|
58 |
"\n", |
|
|
59 |
"values = shuffled.values\n", |
|
|
60 |
"x = values[:, :-1]\n", |
|
|
61 |
"y = values[:, -1].astype(int)\n", |
|
|
62 |
"del values\n", |
|
|
63 |
"del shuffled" |
|
|
64 |
] |
|
|
65 |
}, |
|
|
66 |
{ |
|
|
67 |
"cell_type": "code", |
|
|
68 |
"execution_count": null, |
|
|
69 |
"metadata": {}, |
|
|
70 |
"outputs": [], |
|
|
71 |
"source": [ |
|
|
72 |
"TEST_CLASS_SIZE = 100\n", |
|
|
73 |
"\n", |
|
|
74 |
"class_x = []\n", |
|
|
75 |
"class_count = []\n", |
|
|
76 |
"\n", |
|
|
77 |
"for label in range(5):\n", |
|
|
78 |
" x_i = x[y == label]\n", |
|
|
79 |
" \n", |
|
|
80 |
" # Take the first TEST_CLASS_SIZE elements for the test set\n", |
|
|
81 |
" if label == 0:\n", |
|
|
82 |
" x_test = x_i[:TEST_CLASS_SIZE, :]\n", |
|
|
83 |
" y_test = np.zeros((TEST_CLASS_SIZE)).astype(int)\n", |
|
|
84 |
" else:\n", |
|
|
85 |
" x_test = np.concatenate((x_test, x_i[:TEST_CLASS_SIZE, :]), axis=0)\n", |
|
|
86 |
" y_test = np.concatenate((y_test, np.zeros((TEST_CLASS_SIZE)).astype(int) + label))\n", |
|
|
87 |
" \n", |
|
|
88 |
" # Use the remainder of the elements for the training set\n", |
|
|
89 |
" x_i = x_i[TEST_CLASS_SIZE:, :]\n", |
|
|
90 |
" class_x.append(x_i)\n", |
|
|
91 |
" class_count.append(len(x_i))\n", |
|
|
92 |
"\n", |
|
|
93 |
"# Compute the multiple of class elements needed to balance the classes\n", |
|
|
94 |
"counts = (np.floor(max(class_count) / np.array(class_count))).astype(int)\n", |
|
|
95 |
"print('Multiples:', counts)\n", |
|
|
96 |
"\n", |
|
|
97 |
"# Append repeated values for under-represented classes\n", |
|
|
98 |
"for label in range(5):\n", |
|
|
99 |
" count = counts[label]\n", |
|
|
100 |
" if label == 0:\n", |
|
|
101 |
" x_bal = class_x[label]\n", |
|
|
102 |
" y_bal = np.zeros((class_count[label])).astype(int)\n", |
|
|
103 |
" count -= 1\n", |
|
|
104 |
"\n", |
|
|
105 |
" for j in range(count):\n", |
|
|
106 |
" x_bal = np.concatenate((x_bal, class_x[label]), axis=0)\n", |
|
|
107 |
" y_bal = np.concatenate((y_bal, np.zeros((class_count[label])).astype(int) + label))\n", |
|
|
108 |
"\n", |
|
|
109 |
"print('Training set shapes:', np.shape(x_bal), np.shape(y_bal))\n", |
|
|
110 |
"print('Test set shapes:', np.shape(x_test), np.shape(y_test))\n", |
|
|
111 |
"\n", |
|
|
112 |
"with open(TEST_SET, 'wb') as file:\n", |
|
|
113 |
" pickle.dump({'x': x_test, 'y': y_test}, file)\n", |
|
|
114 |
"\n", |
|
|
115 |
"with open(TRAIN_SET, 'wb') as file:\n", |
|
|
116 |
" pickle.dump({'x': x_bal, 'y': y_bal}, file)" |
|
|
117 |
] |
|
|
118 |
}, |
|
|
119 |
{ |
|
|
120 |
"cell_type": "markdown", |
|
|
121 |
"metadata": {}, |
|
|
122 |
"source": [ |
|
|
123 |
"## Next\n", |
|
|
124 |
"Run the `ClassifyECG.ipynb` notebook next..." |
|
|
125 |
] |
|
|
126 |
}, |
|
|
127 |
{ |
|
|
128 |
"cell_type": "code", |
|
|
129 |
"execution_count": null, |
|
|
130 |
"metadata": {}, |
|
|
131 |
"outputs": [], |
|
|
132 |
"source": [] |
|
|
133 |
} |
|
|
134 |
], |
|
|
135 |
"metadata": { |
|
|
136 |
"kernelspec": { |
|
|
137 |
"display_name": "Python 3", |
|
|
138 |
"language": "python", |
|
|
139 |
"name": "python3" |
|
|
140 |
}, |
|
|
141 |
"language_info": { |
|
|
142 |
"codemirror_mode": { |
|
|
143 |
"name": "ipython", |
|
|
144 |
"version": 3 |
|
|
145 |
}, |
|
|
146 |
"file_extension": ".py", |
|
|
147 |
"mimetype": "text/x-python", |
|
|
148 |
"name": "python", |
|
|
149 |
"nbconvert_exporter": "python", |
|
|
150 |
"pygments_lexer": "ipython3", |
|
|
151 |
"version": "3.6.7" |
|
|
152 |
} |
|
|
153 |
}, |
|
|
154 |
"nbformat": 4, |
|
|
155 |
"nbformat_minor": 2 |
|
|
156 |
} |