|
a |
|
b/ECG/ConvModel.swift |
|
|
1 |
// |
|
|
2 |
// ConvModel.swift |
|
|
3 |
// ECG |
|
|
4 |
// |
|
|
5 |
// Created by Dave Fernandes on 2019-03-04. |
|
|
6 |
// Copyright © 2019 MintLeaf Software Inc. All rights reserved. |
|
|
7 |
// |
|
|
8 |
|
|
|
9 |
// Model is from: https://arxiv.org/pdf/1805.00794.pdf |
|
|
10 |
|
|
|
11 |
import TensorFlow |
|
|
12 |
|
|
|
13 |
public struct ConvUnit<Scalar: TensorFlowFloatingPoint> : Layer { |
|
|
14 |
var conv1: Conv1D<Scalar> |
|
|
15 |
var conv2: Conv1D<Scalar> |
|
|
16 |
var pool: MaxPool1D<Scalar> |
|
|
17 |
|
|
|
18 |
public init(kernelSize: Int, channels: Int) { |
|
|
19 |
conv1 = Conv1D<Scalar>(filterShape: (kernelSize, channels, channels), padding: .same, activation: relu) |
|
|
20 |
conv2 = Conv1D<Scalar>(filterShape: (kernelSize, channels, channels), padding: .same) |
|
|
21 |
pool = MaxPool1D<Scalar>(poolSize: kernelSize, stride: 2, padding: .valid) |
|
|
22 |
} |
|
|
23 |
|
|
|
24 |
@differentiable |
|
|
25 |
public func callAsFunction(_ input: Tensor<Scalar>) -> Tensor<Scalar> { |
|
|
26 |
var tmp = input.sequenced(through: conv1, conv2) |
|
|
27 |
tmp = pool(relu(tmp + input)) |
|
|
28 |
return tmp |
|
|
29 |
} |
|
|
30 |
} |
|
|
31 |
|
|
|
32 |
public struct ConvModel : Layer { |
|
|
33 |
var conv1: Conv1D<Float> |
|
|
34 |
var convUnit = [ConvUnit<Float>]() |
|
|
35 |
var dense1: Dense<Float> |
|
|
36 |
var dense2: Dense<Float> |
|
|
37 |
|
|
|
38 |
@noDerivative let convUnitCount = 5 |
|
|
39 |
|
|
|
40 |
public init() { |
|
|
41 |
conv1 = Conv1D<Float>(filterShape: (5, 1, 32), stride: 1, padding: .same) |
|
|
42 |
for _ in 0..<convUnitCount { |
|
|
43 |
convUnit.append(ConvUnit<Float>(kernelSize: 5, channels: 32)) |
|
|
44 |
} |
|
|
45 |
dense1 = Dense<Float>(inputSize: 64, outputSize: 32, activation: relu) |
|
|
46 |
dense2 = Dense<Float>(inputSize: 32, outputSize: 5) |
|
|
47 |
} |
|
|
48 |
|
|
|
49 |
@differentiable |
|
|
50 |
public func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> { |
|
|
51 |
var tmp = conv1(input.expandingShape(at: 2)) |
|
|
52 |
|
|
|
53 |
for i in 0..<convUnitCount { |
|
|
54 |
let unit = convUnit[i] |
|
|
55 |
tmp = unit(tmp) |
|
|
56 |
} |
|
|
57 |
|
|
|
58 |
tmp = tmp.reshaped(to: [-1, 64]) |
|
|
59 |
tmp = tmp.sequenced(through: dense1, dense2) |
|
|
60 |
return tmp |
|
|
61 |
} |
|
|
62 |
|
|
|
63 |
public func predictedClasses(for input: Tensor<Float>) -> Tensor<Int32> { |
|
|
64 |
return model.inferring(from: input).argmax(squeezingAxis: 1) |
|
|
65 |
} |
|
|
66 |
} |
|
|
67 |
|
|
|
68 |
typealias ECGModel = ConvModel |
|
|
69 |
|
|
|
70 |
@differentiable(wrt: model) |
|
|
71 |
func loss(model: ECGModel, examples: Example) -> Tensor<Float> { |
|
|
72 |
let logits = model(examples.series) |
|
|
73 |
return softmaxCrossEntropy(logits: logits, labels: examples.labels) |
|
|
74 |
} |