|
a |
|
b/BayesClassifierECG.ipynb |
|
|
1 |
{ |
|
|
2 |
"nbformat": 4, |
|
|
3 |
"nbformat_minor": 0, |
|
|
4 |
"metadata": { |
|
|
5 |
"colab": { |
|
|
6 |
"name": "BayesClassifierECG-v1.ipynb", |
|
|
7 |
"version": "0.3.2", |
|
|
8 |
"provenance": [], |
|
|
9 |
"collapsed_sections": [ |
|
|
10 |
"x2Q8Cy8HZ8dB" |
|
|
11 |
] |
|
|
12 |
}, |
|
|
13 |
"kernelspec": { |
|
|
14 |
"name": "python3", |
|
|
15 |
"display_name": "Python 3" |
|
|
16 |
}, |
|
|
17 |
"accelerator": "GPU" |
|
|
18 |
}, |
|
|
19 |
"cells": [ |
|
|
20 |
{ |
|
|
21 |
"metadata": { |
|
|
22 |
"id": "DfByttJIWbgQ", |
|
|
23 |
"colab_type": "text" |
|
|
24 |
}, |
|
|
25 |
"cell_type": "markdown", |
|
|
26 |
"source": [ |
|
|
27 |
"# Bayesian Classification for ECG Time-Series\n", |
|
|
28 |
"\n", |
|
|
29 |
"> Copyright 2019 Dave Fernandes. All Rights Reserved.\n", |
|
|
30 |
"> \n", |
|
|
31 |
"> Licensed under the Apache License, Version 2.0 (the \"License\");\n", |
|
|
32 |
"> you may not use this file except in compliance with the License.\n", |
|
|
33 |
"> You may obtain a copy of the License at\n", |
|
|
34 |
">\n", |
|
|
35 |
"> http://www.apache.org/licenses/LICENSE-2.0\n", |
|
|
36 |
"> \n", |
|
|
37 |
"> Unless required by applicable law or agreed to in writing, software\n", |
|
|
38 |
"> distributed under the License is distributed on an \"AS IS\" BASIS,\n", |
|
|
39 |
"> WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", |
|
|
40 |
"> See the License for the specific language governing permissions and\n", |
|
|
41 |
"> limitations under the License." |
|
|
42 |
] |
|
|
43 |
}, |
|
|
44 |
{ |
|
|
45 |
"metadata": { |
|
|
46 |
"id": "MTd4aHhYWhdN", |
|
|
47 |
"colab_type": "text" |
|
|
48 |
}, |
|
|
49 |
"cell_type": "markdown", |
|
|
50 |
"source": [ |
|
|
51 |
"### Overview\n", |
|
|
52 |
"This notebook classifies time-series for segmented heartbeats from ECG lead II recordings. Either of two models (CNN or RNN) can be selected from training and evaluation.\n", |
|
|
53 |
"- Data for this analysis should be prepared using the `PreprocessECG.ipynb` notebook from this project.\n", |
|
|
54 |
"- Original data is from: https://www.kaggle.com/shayanfazeli/heartbeat" |
|
|
55 |
] |
|
|
56 |
}, |
|
|
57 |
{ |
|
|
58 |
"metadata": { |
|
|
59 |
"id": "hjmdX-HbWdeI", |
|
|
60 |
"colab_type": "code", |
|
|
61 |
"colab": {} |
|
|
62 |
}, |
|
|
63 |
"cell_type": "code", |
|
|
64 |
"source": [ |
|
|
65 |
"import numpy as np\n", |
|
|
66 |
"import tensorflow as tf\n", |
|
|
67 |
"import tensorflow.keras.layers as keras\n", |
|
|
68 |
"import tensorflow_probability as tfp\n", |
|
|
69 |
"from tensorflow_probability import distributions as tfd\n", |
|
|
70 |
"import matplotlib.pyplot as plt\n", |
|
|
71 |
"import pickle\n", |
|
|
72 |
"\n", |
|
|
73 |
"from google.colab import drive\n", |
|
|
74 |
"drive.mount('/content/drive')\n", |
|
|
75 |
"\n", |
|
|
76 |
"TRAIN_SET = '/content/drive/My Drive/Colab Notebooks/Data/train_set.pickle'\n", |
|
|
77 |
"TEST_SET = '/content/drive/My Drive/Colab Notebooks/Data/test_set.pickle'\n", |
|
|
78 |
"\n", |
|
|
79 |
"BATCH_SIZE = 125\n", |
|
|
80 |
"\n", |
|
|
81 |
"with open(TEST_SET, 'rb') as file:\n", |
|
|
82 |
" test_set = pickle.load(file)\n", |
|
|
83 |
" x_test = test_set['x'].astype('float32')\n", |
|
|
84 |
" y_test = test_set['y'].astype('int32')\n", |
|
|
85 |
"\n", |
|
|
86 |
"with open(TRAIN_SET, 'rb') as file:\n", |
|
|
87 |
" train_set = pickle.load(file)\n", |
|
|
88 |
" x_train = train_set['x'].astype('float32')\n", |
|
|
89 |
" y_train = train_set['y'].astype('int32')\n", |
|
|
90 |
"\n", |
|
|
91 |
"TRAIN_COUNT = len(y_train)\n", |
|
|
92 |
"TEST_COUNT = len(y_test)\n", |
|
|
93 |
"BATCHES_PER_EPOCH = TRAIN_COUNT // BATCH_SIZE\n", |
|
|
94 |
"TEST_BATCHES_PER_EPOCH = TEST_COUNT // BATCH_SIZE\n", |
|
|
95 |
"INPUT_SIZE = np.shape(x_train)[1]\n", |
|
|
96 |
"\n", |
|
|
97 |
"print('Train count:', TRAIN_COUNT, 'Test count:', TEST_COUNT)" |
|
|
98 |
], |
|
|
99 |
"execution_count": 0, |
|
|
100 |
"outputs": [] |
|
|
101 |
}, |
|
|
102 |
{ |
|
|
103 |
"metadata": { |
|
|
104 |
"id": "x2Q8Cy8HZ8dB", |
|
|
105 |
"colab_type": "text" |
|
|
106 |
}, |
|
|
107 |
"cell_type": "markdown", |
|
|
108 |
"source": [ |
|
|
109 |
"### Input Datasets" |
|
|
110 |
] |
|
|
111 |
}, |
|
|
112 |
{ |
|
|
113 |
"metadata": { |
|
|
114 |
"id": "uiTIHzr5Wsmn", |
|
|
115 |
"colab_type": "code", |
|
|
116 |
"colab": {} |
|
|
117 |
}, |
|
|
118 |
"cell_type": "code", |
|
|
119 |
"source": [ |
|
|
120 |
"def combined_dataset(features, labels):\n", |
|
|
121 |
" assert features.shape[0] == labels.shape[0]\n", |
|
|
122 |
" dataset = tf.data.Dataset.from_tensor_slices((np.expand_dims(features, axis=-1), labels))\n", |
|
|
123 |
" return dataset\n", |
|
|
124 |
"\n", |
|
|
125 |
"# For training\n", |
|
|
126 |
"def train_input_fn():\n", |
|
|
127 |
" dataset = combined_dataset(x_train, y_train)\n", |
|
|
128 |
" return dataset.shuffle(TRAIN_COUNT, reshuffle_each_iteration=True).repeat().batch(BATCH_SIZE, drop_remainder=True).prefetch(1)\n", |
|
|
129 |
"\n", |
|
|
130 |
"# For evaluation and metrics\n", |
|
|
131 |
"def eval_input_fn():\n", |
|
|
132 |
" dataset = combined_dataset(x_test, y_test)\n", |
|
|
133 |
" return dataset.repeat().batch(BATCH_SIZE).prefetch(1)\n", |
|
|
134 |
"\n", |
|
|
135 |
"training_batches = train_input_fn()\n", |
|
|
136 |
"training_iterator = tf.compat.v1.data.make_one_shot_iterator(training_batches)\n", |
|
|
137 |
"heldout_iterator = tf.compat.v1.data.make_one_shot_iterator(eval_input_fn())\n", |
|
|
138 |
"\n", |
|
|
139 |
"# Combine these into a feedable iterator that can switch between training\n", |
|
|
140 |
"# and validation inputs.\n", |
|
|
141 |
"handle = tf.compat.v1.placeholder(tf.string, shape=[])\n", |
|
|
142 |
"feedable_iterator = tf.compat.v1.data.Iterator.from_string_handle(handle, training_batches.output_types, training_batches.output_shapes)\n", |
|
|
143 |
"series, labels = feedable_iterator.get_next()" |
|
|
144 |
], |
|
|
145 |
"execution_count": 0, |
|
|
146 |
"outputs": [] |
|
|
147 |
}, |
|
|
148 |
{ |
|
|
149 |
"metadata": { |
|
|
150 |
"id": "PnGsC48GaGTk", |
|
|
151 |
"colab_type": "text" |
|
|
152 |
}, |
|
|
153 |
"cell_type": "markdown", |
|
|
154 |
"source": [ |
|
|
155 |
"### Define the model\n", |
|
|
156 |
"#### Bayesian CNN Model\n", |
|
|
157 |
"* The convolutional model is taken from: https://arxiv.org/pdf/1805.00794.pdf\n", |
|
|
158 |
"\n", |
|
|
159 |
"Model consists of:\n", |
|
|
160 |
"* An initial 1-D convolutional layer\n", |
|
|
161 |
"* 5 repeated residual blocks (`same` padding)\n", |
|
|
162 |
"* A fully-connected layer\n", |
|
|
163 |
"* A linear layer with softmax output\n", |
|
|
164 |
"* Flipout layers are used instead of standard layers" |
|
|
165 |
] |
|
|
166 |
}, |
|
|
167 |
{ |
|
|
168 |
"metadata": { |
|
|
169 |
"id": "Q8XdxTVYaO1q", |
|
|
170 |
"colab_type": "code", |
|
|
171 |
"colab": {} |
|
|
172 |
}, |
|
|
173 |
"cell_type": "code", |
|
|
174 |
"source": [ |
|
|
175 |
"KL_ANNEALING = 30\n", |
|
|
176 |
"\n", |
|
|
177 |
"MODEL_PATH = '/content/drive/My Drive/Colab Notebooks/Models/BayesianCNN/BNN.tfmodel'\n", |
|
|
178 |
"\n", |
|
|
179 |
"def kernel_prior(dtype, shape, name, trainable, add_variable_fn):\n", |
|
|
180 |
" return tfp.layers.default_multivariate_normal_fn(dtype, shape, name, trainable, add_variable_fn)\n", |
|
|
181 |
"# return tfd.Horseshoe(scale=5.0)\n", |
|
|
182 |
"\n", |
|
|
183 |
"# mix = 0.75\n", |
|
|
184 |
"# mixture = tfd.Mixture(name=name,\n", |
|
|
185 |
"# cat=tfd.Deterministic([mix, 1. - mix]),\n", |
|
|
186 |
"# components=[tfd.Normal(loc=0., scale=1.), tfd.Normal(loc=0., scale=7.)])\n", |
|
|
187 |
"# return mixture\n", |
|
|
188 |
"\n", |
|
|
189 |
"def conv_unit(unit, input_layer):\n", |
|
|
190 |
" s = '_' + str(unit)\n", |
|
|
191 |
" layer = tfp.layers.Convolution1DFlipout(name='Conv1' + s, filters=32, kernel_size=5, strides=1, padding='same', activation='relu', kernel_prior_fn=kernel_prior)(input_layer)\n", |
|
|
192 |
" layer = tfp.layers.Convolution1DFlipout(name='Conv2' + s, filters=32, kernel_size=5, strides=1, padding='same', activation=None, kernel_prior_fn=kernel_prior)(layer )\n", |
|
|
193 |
" layer = keras.Add(name='ResidualSum' + s)([layer, input_layer])\n", |
|
|
194 |
" layer = keras.Activation(\"relu\", name='Act' + s)(layer)\n", |
|
|
195 |
" layer = keras.MaxPooling1D(name='MaxPool' + s, pool_size=5, strides=2)(layer)\n", |
|
|
196 |
" return layer\n", |
|
|
197 |
"\n", |
|
|
198 |
"def model_fn(input_shape):\n", |
|
|
199 |
" time_series = tf.keras.layers.Input(shape=input_shape, dtype='float32')\n", |
|
|
200 |
" \n", |
|
|
201 |
" current_layer = tfp.layers.Convolution1DFlipout(filters=32, kernel_size=5, strides=1, kernel_prior_fn=kernel_prior)(time_series)\n", |
|
|
202 |
"\n", |
|
|
203 |
" for i in range(5):\n", |
|
|
204 |
" current_layer = conv_unit(i + 1, current_layer)\n", |
|
|
205 |
"\n", |
|
|
206 |
" current_layer = keras.Flatten()(current_layer)\n", |
|
|
207 |
" current_layer = tfp.layers.DenseFlipout(32, name='FC1', activation='relu', kernel_prior_fn=kernel_prior)(current_layer)\n", |
|
|
208 |
" logits = tfp.layers.DenseFlipout(5, name='Output', kernel_prior_fn=kernel_prior)(current_layer)\n", |
|
|
209 |
" \n", |
|
|
210 |
" model = tf.keras.Model(inputs=time_series, outputs=logits, name='bayes_cnn_model')\n", |
|
|
211 |
" return model\n", |
|
|
212 |
" \n", |
|
|
213 |
"# Compute the negative Evidence Lower Bound (ELBO) loss\n", |
|
|
214 |
"t = tf.compat.v1.Variable(0.0)\n", |
|
|
215 |
"\n", |
|
|
216 |
"def loss_fn(labels, logits):\n", |
|
|
217 |
" labels_distribution = tfd.Categorical(logits=logits)\n", |
|
|
218 |
"\n", |
|
|
219 |
" # Perform KL annealing. The optimal number of annealing steps\n", |
|
|
220 |
" # depends on the dataset and architecture.\n", |
|
|
221 |
" kl_regularizer = t / (KL_ANNEALING * BATCHES_PER_EPOCH)\n", |
|
|
222 |
"\n", |
|
|
223 |
" # Compute the -ELBO as the loss. The kl term is annealed from 0 to 1 over\n", |
|
|
224 |
" # the epochs specified by the kl_annealing flag.\n", |
|
|
225 |
" log_likelihood = labels_distribution.log_prob(labels)\n", |
|
|
226 |
" neg_log_likelihood = -tf.reduce_mean(input_tensor=log_likelihood)\n", |
|
|
227 |
" kl = sum(model.losses) / len(x_train) * tf.minimum(1.0, kl_regularizer)\n", |
|
|
228 |
" return neg_log_likelihood + kl, kl, kl_regularizer, labels_distribution\n", |
|
|
229 |
"\n", |
|
|
230 |
"model = model_fn([INPUT_SIZE, 1])\n", |
|
|
231 |
"model.summary()" |
|
|
232 |
], |
|
|
233 |
"execution_count": 0, |
|
|
234 |
"outputs": [] |
|
|
235 |
}, |
|
|
236 |
{ |
|
|
237 |
"metadata": { |
|
|
238 |
"id": "1h96cjFraUo_", |
|
|
239 |
"colab_type": "text" |
|
|
240 |
}, |
|
|
241 |
"cell_type": "markdown", |
|
|
242 |
"source": [ |
|
|
243 |
"### Train model" |
|
|
244 |
] |
|
|
245 |
}, |
|
|
246 |
{ |
|
|
247 |
"metadata": { |
|
|
248 |
"id": "9uHtgxoLynkU", |
|
|
249 |
"colab_type": "code", |
|
|
250 |
"colab": {} |
|
|
251 |
}, |
|
|
252 |
"cell_type": "code", |
|
|
253 |
"source": [ |
|
|
254 |
"INITIAL_LEARNING_RATE = 0.0001\n", |
|
|
255 |
"EPOCHS = 100\n", |
|
|
256 |
"\n", |
|
|
257 |
"assert (EPOCHS > 0)\n", |
|
|
258 |
"\n", |
|
|
259 |
"logits = model(series)\n", |
|
|
260 |
"loss, kl, kl_reg, labels_distribution = loss_fn(labels, logits)\n", |
|
|
261 |
"\n", |
|
|
262 |
"# Build metrics for evaluation. Predictions are formed from a single forward\n", |
|
|
263 |
"# pass of the probabilistic layers. They are cheap but noisy\n", |
|
|
264 |
"# predictions.\n", |
|
|
265 |
"predictions = tf.argmax(input=logits, axis=1)\n", |
|
|
266 |
"with tf.compat.v1.name_scope(\"train\"):\n", |
|
|
267 |
" train_accuracy, train_accuracy_update_op = tf.compat.v1.metrics.accuracy(labels=labels, predictions=predictions)\n", |
|
|
268 |
" opt = tf.compat.v1.train.AdamOptimizer(INITIAL_LEARNING_RATE)\n", |
|
|
269 |
" train_op = opt.minimize(loss)\n", |
|
|
270 |
" update_step_op = tf.compat.v1.assign(t, t + 1)\n", |
|
|
271 |
"\n", |
|
|
272 |
"with tf.compat.v1.name_scope(\"valid\"):\n", |
|
|
273 |
" valid_accuracy, valid_accuracy_update_op = tf.compat.v1.metrics.accuracy(labels=labels, predictions=predictions)\n", |
|
|
274 |
"\n", |
|
|
275 |
"init_op = tf.group(tf.compat.v1.global_variables_initializer(), tf.compat.v1.local_variables_initializer())\n", |
|
|
276 |
"\n", |
|
|
277 |
"stream_vars_valid = [\n", |
|
|
278 |
" v for v in tf.compat.v1.local_variables() if \"valid/\" in v.name\n", |
|
|
279 |
"]\n", |
|
|
280 |
"reset_valid_op = tf.compat.v1.variables_initializer(stream_vars_valid)\n", |
|
|
281 |
"\n", |
|
|
282 |
"with tf.compat.v1.Session() as sess:\n", |
|
|
283 |
" sess.run(init_op)\n", |
|
|
284 |
"\n", |
|
|
285 |
" # Run the training loop\n", |
|
|
286 |
" train_handle = sess.run(training_iterator.string_handle())\n", |
|
|
287 |
" heldout_handle = sess.run(heldout_iterator.string_handle())\n", |
|
|
288 |
" training_steps = EPOCHS * BATCHES_PER_EPOCH\n", |
|
|
289 |
" \n", |
|
|
290 |
" for step in range(training_steps):\n", |
|
|
291 |
" _ = sess.run([train_op, train_accuracy_update_op, update_step_op], feed_dict={handle: train_handle})\n", |
|
|
292 |
"\n", |
|
|
293 |
" # Manually print the frequency\n", |
|
|
294 |
" if step % (BATCHES_PER_EPOCH // 5) == 0:\n", |
|
|
295 |
" loss_value, accuracy_value, kl_value, kl_reg_value = sess.run([loss, train_accuracy, kl, kl_reg], feed_dict={handle: train_handle})\n", |
|
|
296 |
" print(\" Loss: {:.3f} Accuracy: {:.3f} KL: {:.3f} KL-reg: {:.3f}\".format(loss_value, accuracy_value, kl_value, kl_reg_value))\n", |
|
|
297 |
"\n", |
|
|
298 |
" if (step + 1) % BATCHES_PER_EPOCH == 0:\n", |
|
|
299 |
" # Calculate validation accuracy\n", |
|
|
300 |
" for _ in range(TEST_BATCHES_PER_EPOCH):\n", |
|
|
301 |
" sess.run(valid_accuracy_update_op, feed_dict={handle: heldout_handle})\n", |
|
|
302 |
" \n", |
|
|
303 |
" valid_value = sess.run(valid_accuracy, feed_dict={handle: heldout_handle})\n", |
|
|
304 |
" print(\"Epoch: {:>3d} Validation Accuracy: {:.3f}\".format((step + 1) // BATCHES_PER_EPOCH, valid_value))\n", |
|
|
305 |
"\n", |
|
|
306 |
" sess.run(reset_valid_op)\n", |
|
|
307 |
" \n", |
|
|
308 |
" model.save_weights(MODEL_PATH)" |
|
|
309 |
], |
|
|
310 |
"execution_count": 0, |
|
|
311 |
"outputs": [] |
|
|
312 |
}, |
|
|
313 |
{ |
|
|
314 |
"metadata": { |
|
|
315 |
"id": "Ml9cWK8j0vEU", |
|
|
316 |
"colab_type": "text" |
|
|
317 |
}, |
|
|
318 |
"cell_type": "markdown", |
|
|
319 |
"source": [ |
|
|
320 |
"### Evaluate model" |
|
|
321 |
] |
|
|
322 |
}, |
|
|
323 |
{ |
|
|
324 |
"metadata": { |
|
|
325 |
"id": "p40qKgiIIVNd", |
|
|
326 |
"colab_type": "code", |
|
|
327 |
"colab": {} |
|
|
328 |
}, |
|
|
329 |
"cell_type": "code", |
|
|
330 |
"source": [ |
|
|
331 |
"NUM_MONTE_CARLO = 1000\n", |
|
|
332 |
"\n", |
|
|
333 |
"model.load_weights(MODEL_PATH)\n", |
|
|
334 |
"\n", |
|
|
335 |
"mc_counts = np.zeros((TEST_COUNT, 5))\n", |
|
|
336 |
"x = np.expand_dims(x_test, -1)\n", |
|
|
337 |
"sample_index = np.arange(TEST_COUNT)\n", |
|
|
338 |
"\n", |
|
|
339 |
"for i in range(NUM_MONTE_CARLO):\n", |
|
|
340 |
" y_pred = np.argmax(model.predict(x), axis=1)\n", |
|
|
341 |
" mc_counts[sample_index, y_pred] += 1\n", |
|
|
342 |
" \n", |
|
|
343 |
"y_pred = np.argmax(mc_counts, axis=1)\n", |
|
|
344 |
"y_prob = mc_counts[sample_index, y_pred] / NUM_MONTE_CARLO\n", |
|
|
345 |
"\n", |
|
|
346 |
"y_prob_correct = y_prob[y_pred == y_test]\n", |
|
|
347 |
"y_prob_mis = y_prob[y_pred != y_test]" |
|
|
348 |
], |
|
|
349 |
"execution_count": 0, |
|
|
350 |
"outputs": [] |
|
|
351 |
}, |
|
|
352 |
{ |
|
|
353 |
"metadata": { |
|
|
354 |
"id": "dWh_nMZN9J0N", |
|
|
355 |
"colab_type": "text" |
|
|
356 |
}, |
|
|
357 |
"cell_type": "markdown", |
|
|
358 |
"source": [ |
|
|
359 |
"### Check probability estimates" |
|
|
360 |
] |
|
|
361 |
}, |
|
|
362 |
{ |
|
|
363 |
"metadata": { |
|
|
364 |
"id": "K0lRvUS9gQIk", |
|
|
365 |
"colab_type": "code", |
|
|
366 |
"colab": {} |
|
|
367 |
}, |
|
|
368 |
"cell_type": "code", |
|
|
369 |
"source": [ |
|
|
370 |
"from astropy.stats import binom_conf_interval\n", |
|
|
371 |
"\n", |
|
|
372 |
"_, _, _ = plt.hist(y_prob, 10, (0, 1))\n", |
|
|
373 |
"plt.xlabel('Belief')\n", |
|
|
374 |
"plt.ylabel('Count')\n", |
|
|
375 |
"plt.title('All Predictions')\n", |
|
|
376 |
"plt.show();\n", |
|
|
377 |
"\n", |
|
|
378 |
"n_all, bins = np.histogram(y_prob, 10, (0, 1))\n", |
|
|
379 |
"n_correct, bins = np.histogram(y_prob_correct, 10, (0, 1))\n", |
|
|
380 |
"\n", |
|
|
381 |
"f_correct = n_correct / np.clip(n_all, 1, None)\n", |
|
|
382 |
"f_bins = 0.5 * (bins[:-1] + bins[1:])\n", |
|
|
383 |
"\n", |
|
|
384 |
"n_correct = n_correct[n_all > 0]\n", |
|
|
385 |
"n_total = n_all[n_all > 0]\n", |
|
|
386 |
"f_correct = n_correct / n_total\n", |
|
|
387 |
"f_bins = f_bins[n_all > 0]\n", |
|
|
388 |
"\n", |
|
|
389 |
"lower_bound, upper_bound = binom_conf_interval(n_correct, n_total)\n", |
|
|
390 |
"error_bars = np.array([f_correct - lower_bound, upper_bound - f_correct])\n", |
|
|
391 |
"\n", |
|
|
392 |
"plt.plot([0., 1.], [0., 1.])\n", |
|
|
393 |
"plt.errorbar(f_bins, f_correct, yerr=error_bars, fmt='o')\n", |
|
|
394 |
"plt.xlabel('Monte Carlo Probability')\n", |
|
|
395 |
"plt.ylabel('Frequency')\n", |
|
|
396 |
"plt.title('Correct Predictions')\n", |
|
|
397 |
"plt.show();" |
|
|
398 |
], |
|
|
399 |
"execution_count": 0, |
|
|
400 |
"outputs": [] |
|
|
401 |
}, |
|
|
402 |
{ |
|
|
403 |
"metadata": { |
|
|
404 |
"id": "ggvEGluM9TEw", |
|
|
405 |
"colab_type": "text" |
|
|
406 |
}, |
|
|
407 |
"cell_type": "markdown", |
|
|
408 |
"source": [ |
|
|
409 |
"### Compute metrics" |
|
|
410 |
] |
|
|
411 |
}, |
|
|
412 |
{ |
|
|
413 |
"metadata": { |
|
|
414 |
"id": "TeV6NtwnP0Lm", |
|
|
415 |
"colab_type": "code", |
|
|
416 |
"colab": {} |
|
|
417 |
}, |
|
|
418 |
"cell_type": "code", |
|
|
419 |
"source": [ |
|
|
420 |
"import sklearn.metrics as skm\n", |
|
|
421 |
"import seaborn\n", |
|
|
422 |
"\n", |
|
|
423 |
"# Classification report\n", |
|
|
424 |
"report = skm.classification_report(y_test, y_pred)\n", |
|
|
425 |
"print(report)\n", |
|
|
426 |
"\n", |
|
|
427 |
"# Confusion matrix\n", |
|
|
428 |
"cm = skm.confusion_matrix(y_test, y_pred)\n", |
|
|
429 |
"seaborn.heatmap(cm, annot=True,annot_kws={\"size\": 16})" |
|
|
430 |
], |
|
|
431 |
"execution_count": 0, |
|
|
432 |
"outputs": [] |
|
|
433 |
}, |
|
|
434 |
{ |
|
|
435 |
"metadata": { |
|
|
436 |
"id": "MnQeNtCkV3Uv", |
|
|
437 |
"colab_type": "code", |
|
|
438 |
"colab": {} |
|
|
439 |
}, |
|
|
440 |
"cell_type": "code", |
|
|
441 |
"source": [ |
|
|
442 |
"" |
|
|
443 |
], |
|
|
444 |
"execution_count": 0, |
|
|
445 |
"outputs": [] |
|
|
446 |
} |
|
|
447 |
] |
|
|
448 |
} |