|
a |
|
b/classification.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import os\n", |
|
|
10 |
"import serial\n", |
|
|
11 |
"from time import time, sleep" |
|
|
12 |
] |
|
|
13 |
}, |
|
|
14 |
{ |
|
|
15 |
"cell_type": "code", |
|
|
16 |
"execution_count": null, |
|
|
17 |
"metadata": {}, |
|
|
18 |
"outputs": [], |
|
|
19 |
"source": [ |
|
|
20 |
"ser = serial.Serial('/dev/ttyUSB0',9600)\n", |
|
|
21 |
"print(ser.name) \n", |
|
|
22 |
"\n", |
|
|
23 |
"# Read from serial moniter\n", |
|
|
24 |
"line = ser.read_until('e')\n", |
|
|
25 |
"\n", |
|
|
26 |
"# Delete ecg_signal.txt file if it's already present.\n", |
|
|
27 |
"cwd = os.getcwd()\n", |
|
|
28 |
"check = cwd + \"/ecg_signal.txt\"\n", |
|
|
29 |
"\n", |
|
|
30 |
"files = sorted(glob.glob(cwd + '/*.csv'), key=numericalSort)\n", |
|
|
31 |
"if check in files:\n", |
|
|
32 |
" os.remove(check)\n", |
|
|
33 |
"\n", |
|
|
34 |
"# Write the data to a file\n", |
|
|
35 |
"f = open('ecg_signal.txt', 'a')\n", |
|
|
36 |
"f.write(str(line)[10:])\n", |
|
|
37 |
"f.close()" |
|
|
38 |
] |
|
|
39 |
}, |
|
|
40 |
{ |
|
|
41 |
"cell_type": "code", |
|
|
42 |
"execution_count": null, |
|
|
43 |
"metadata": {}, |
|
|
44 |
"outputs": [], |
|
|
45 |
"source": [ |
|
|
46 |
"# Convert .txt file into .mat file for prediction\n", |
|
|
47 |
"a = np.loadtxt('ecg_signal.txt', dtype = 'object')\n", |
|
|
48 |
"a1 = a[100:9100]\n", |
|
|
49 |
"a1 = np.asarray(a1, dtype = 'float64')\n", |
|
|
50 |
"a1 = a1.reshape(1,-1)\n", |
|
|
51 |
"scipy.io.savemat('ecg_signal.mat', {'val': a1})" |
|
|
52 |
] |
|
|
53 |
}, |
|
|
54 |
{ |
|
|
55 |
"cell_type": "code", |
|
|
56 |
"execution_count": null, |
|
|
57 |
"metadata": { |
|
|
58 |
"scrolled": true |
|
|
59 |
}, |
|
|
60 |
"outputs": [], |
|
|
61 |
"source": [ |
|
|
62 |
"!python ecg/ecg/predict.py val.json 0.434-0.864-012-0.309-0.892.hdf5" |
|
|
63 |
] |
|
|
64 |
} |
|
|
65 |
], |
|
|
66 |
"metadata": { |
|
|
67 |
"kernelspec": { |
|
|
68 |
"display_name": "Python 3", |
|
|
69 |
"language": "python", |
|
|
70 |
"name": "python3" |
|
|
71 |
}, |
|
|
72 |
"language_info": { |
|
|
73 |
"codemirror_mode": { |
|
|
74 |
"name": "ipython", |
|
|
75 |
"version": 3 |
|
|
76 |
}, |
|
|
77 |
"file_extension": ".py", |
|
|
78 |
"mimetype": "text/x-python", |
|
|
79 |
"name": "python", |
|
|
80 |
"nbconvert_exporter": "python", |
|
|
81 |
"pygments_lexer": "ipython3", |
|
|
82 |
"version": "3.6.5" |
|
|
83 |
} |
|
|
84 |
}, |
|
|
85 |
"nbformat": 4, |
|
|
86 |
"nbformat_minor": 2 |
|
|
87 |
} |