import os
import itertools
import time
import random
import numpy as np
import torch
from sklearn.metrics import accuracy_score, auc, f1_score, precision_score, recall_score
class Meter:
def __init__(self, n_classes=5):
self.metrics = {}
self.confusion = torch.zeros((n_classes, n_classes))
def update(self, x, y, loss):
x = np.argmax(x.detach().cpu().numpy(), axis=1)
y = y.detach().cpu().numpy()
self.metrics['loss'] += loss
self.metrics['accuracy'] += accuracy_score(x,y)
self.metrics['f1'] += f1_score(x,y,average='macro')
self.metrics['precision'] += precision_score(x, y, average='macro', zero_division=1)
self.metrics['recall'] += recall_score(x,y, average='macro', zero_division=1)
self._compute_cm(x, y)
def _compute_cm(self, x, y):
for prob, target in zip(x, y):
if prob == target:
self.confusion[target][target] += 1
else:
self.confusion[target][prob] += 1
def init_metrics(self):
self.metrics['loss'] = 0
self.metrics['accuracy'] = 0
self.metrics['f1'] = 0
self.metrics['precision'] = 0
self.metrics['recall'] = 0
def get_metrics(self):
return self.metrics
def get_confusion_matrix(self):
return self.confusion
if __name__ == '__main__':
meter = Meter()