|
a |
|
b/ecg_gan/train.py |
|
|
1 |
import os |
|
|
2 |
import time |
|
|
3 |
|
|
|
4 |
import numpy as np |
|
|
5 |
import pandas as pd |
|
|
6 |
import matplotlib.pyplot as plt |
|
|
7 |
import seaborn as sns |
|
|
8 |
|
|
|
9 |
import torch |
|
|
10 |
import torch.nn as nn |
|
|
11 |
import torch.nn.functional as F |
|
|
12 |
from torch.utils.data import Dataset, DataLoader |
|
|
13 |
from torch.optim import AdamW, Adam |
|
|
14 |
|
|
|
15 |
from .gan import Generator, Discriminator |
|
|
16 |
from .dataset import ECGDataset, get_dataloader |
|
|
17 |
from .config import Config |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
class Trainer: |
|
|
21 |
def __init__( |
|
|
22 |
self, |
|
|
23 |
generator, |
|
|
24 |
discriminator, |
|
|
25 |
batch_size, |
|
|
26 |
num_epochs, |
|
|
27 |
label |
|
|
28 |
): |
|
|
29 |
self.device = 'cuda:0' if torch.cuda.is_available() else 'cpu' |
|
|
30 |
self.netG = generator.to(self.device) |
|
|
31 |
self.netD = discriminator.to(self.device) |
|
|
32 |
|
|
|
33 |
self.optimizerD = Adam(self.netD.parameters(), lr=0.0002) |
|
|
34 |
self.optimizerG = Adam(self.netG.parameters(), lr=0.0002) |
|
|
35 |
self.criterion = nn.BCELoss() |
|
|
36 |
|
|
|
37 |
self.batch_size = batch_size |
|
|
38 |
self.signal_dim = [self.batch_size, 1, 187] |
|
|
39 |
self.num_epochs = num_epochs |
|
|
40 |
self.dataloader = get_dataloader( |
|
|
41 |
label_name=label, batch_size=self.batch_size |
|
|
42 |
) |
|
|
43 |
self.fixed_noise = torch.randn(self.batch_size, 1, 187, |
|
|
44 |
device=self.device) |
|
|
45 |
self.g_errors = [] |
|
|
46 |
self.d_errors = [] |
|
|
47 |
|
|
|
48 |
def _one_epoch(self): |
|
|
49 |
real_label = 1 |
|
|
50 |
fake_label = 0 |
|
|
51 |
|
|
|
52 |
for i, data in enumerate(self.dataloader, 0): |
|
|
53 |
##### Update Discriminator: maximize log(D(x)) + log(1 - D(G(z))) ##### |
|
|
54 |
## train with real data |
|
|
55 |
self.netD.zero_grad() |
|
|
56 |
real_data = data[0].to(self.device) |
|
|
57 |
# dim for noise |
|
|
58 |
batch_size = real_data.size(0) |
|
|
59 |
self.signal_dim[0] = batch_size |
|
|
60 |
|
|
|
61 |
label = torch.full((batch_size,), real_label, |
|
|
62 |
dtype=real_data.dtype, device=self.device) |
|
|
63 |
|
|
|
64 |
output = self.netD(real_data) |
|
|
65 |
output = output.view(-1) |
|
|
66 |
|
|
|
67 |
errD_real = self.criterion(output, label) |
|
|
68 |
errD_real.backward() |
|
|
69 |
D_x = output.mean().item() |
|
|
70 |
|
|
|
71 |
## train with fake data |
|
|
72 |
noise = torch.randn(self.signal_dim, device=self.device) |
|
|
73 |
fake = self.netG(noise) |
|
|
74 |
label.fill_(fake_label) |
|
|
75 |
|
|
|
76 |
output = self.netD(fake.detach()) |
|
|
77 |
output = output.view(-1) |
|
|
78 |
|
|
|
79 |
errD_fake = self.criterion(output, label) |
|
|
80 |
errD_fake.backward() |
|
|
81 |
D_G_z1 = output.mean().item() |
|
|
82 |
errD = errD_real + errD_fake |
|
|
83 |
self.optimizerD.step() |
|
|
84 |
|
|
|
85 |
##### Update Generator: maximaze log(D(G(z))) |
|
|
86 |
self.netG.zero_grad() |
|
|
87 |
label.fill_(real_label) |
|
|
88 |
output = self.netD(fake) |
|
|
89 |
output = output.view(-1) |
|
|
90 |
|
|
|
91 |
errG = self.criterion(output, label) |
|
|
92 |
errG.backward() |
|
|
93 |
D_G_z2 = output.mean().item() |
|
|
94 |
self.optimizerG.step() |
|
|
95 |
|
|
|
96 |
return errD.item(), errG.item() |
|
|
97 |
|
|
|
98 |
def run(self): |
|
|
99 |
for epoch in range(self.num_epochs): |
|
|
100 |
errD_, errG_ = self._one_epoch() |
|
|
101 |
self.d_errors.append(errD_) |
|
|
102 |
self.g_errors.append(errG_) |
|
|
103 |
if epoch % 300 == 0: |
|
|
104 |
print(f"Epoch: {epoch} | Loss_D: {errD_} | Loss_G: {errG_} | Time: {time.strftime('%H:%M:%S')}") |
|
|
105 |
|
|
|
106 |
fake = self.netG(self.fixed_noise) |
|
|
107 |
plt.plot(fake.detach().cpu().squeeze(1).numpy()[:].transpose()) |
|
|
108 |
plt.show() |
|
|
109 |
|
|
|
110 |
torch.save(self.netG.state_dict(), f"generator.pth") |
|
|
111 |
torch.save(self.netG.state_dict(), f"discriminator.pth") |
|
|
112 |
|
|
|
113 |
|
|
|
114 |
if __name__ == '__main__': |
|
|
115 |
config = Config() |
|
|
116 |
g = Generator() |
|
|
117 |
d = Discriminator() |
|
|
118 |
|
|
|
119 |
trainer = Trainer( |
|
|
120 |
generator=g, |
|
|
121 |
discriminator=d, |
|
|
122 |
batch_size=96, |
|
|
123 |
num_epochs=3000, |
|
|
124 |
label='Fusion of ventricular and normal' |
|
|
125 |
) |
|
|
126 |
trainer.run() |