|
a |
|
b/ecg_classification/dataset.py |
|
|
1 |
import numpy as np |
|
|
2 |
|
|
|
3 |
import torch |
|
|
4 |
from torch.utils.data import Dataset, DataLoader |
|
|
5 |
|
|
|
6 |
from sklearn.model_selection import train_test_split |
|
|
7 |
|
|
|
8 |
from .config import Config |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
class ECGDataset(Dataset): |
|
|
12 |
|
|
|
13 |
def __init__(self, df): |
|
|
14 |
self.df = df |
|
|
15 |
self.data_columns = self.df.columns[:-2].tolist() |
|
|
16 |
|
|
|
17 |
def __getitem__(self, idx): |
|
|
18 |
signal = self.df.loc[idx, self.data_columns].astype('float32') |
|
|
19 |
signal = torch.FloatTensor([signal.values]) |
|
|
20 |
target = torch.LongTensor(np.array(self.df.loc[idx, 'class'])) |
|
|
21 |
return signal, target |
|
|
22 |
|
|
|
23 |
def __len__(self): |
|
|
24 |
return len(self.df) |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
def get_dataloader(phase: str, batch_size: int = 96) -> DataLoader: |
|
|
28 |
''' |
|
|
29 |
Dataset and DataLoader. |
|
|
30 |
Parameters: |
|
|
31 |
pahse: training or validation phase. |
|
|
32 |
batch_size: data per iteration. |
|
|
33 |
Returns: |
|
|
34 |
data generator |
|
|
35 |
''' |
|
|
36 |
df = pd.read_csv(config.train_csv_path) |
|
|
37 |
train_df, val_df = train_test_split( |
|
|
38 |
df, test_size=0.15, random_state=config.seed, stratify=df['label'] |
|
|
39 |
) |
|
|
40 |
train_df, val_df = train_df.reset_index(drop=True), val_df.reset_index(drop=True) |
|
|
41 |
df = train_df if phase == 'train' else val_df |
|
|
42 |
dataset = ECGDataset(df) |
|
|
43 |
dataloader = DataLoader(dataset=dataset, batch_size=batch_size, num_workers=4) |
|
|
44 |
return dataloader |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
if __name__ == '__main__': |
|
|
48 |
train_dataloader = get_dataloader(phase='train', batch_size=96) |
|
|
49 |
val_dataloader = get_dataloader(phase='val', batch_size=96) |