Switch to side-by-side view

--- a
+++ b/ecg_classification/config.py
@@ -0,0 +1,31 @@
+import random
+import numpy as np
+import torch
+
+
+class Config:
+    csv_path = ''
+    seed = 2021
+    device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
+    attn_state_path = '../input/mitbih-with-synthetic/attn.pth'
+    lstm_state_path = '../input/mitbih-with-synthetic/lstm.pth'
+    cnn_state_path = '../input/mitbih-with-synthetic/cnn.pth'
+    
+    attn_logs = '../input/mitbih-with-synthetic/attn.csv'
+    lstm_logs = '../input/mitbih-with-synthetic/lstm.csv'
+    cnn_logs = '../input/mitbih-with-synthetic/cnn.csv'
+    
+    train_csv_path = '../input/mitbih-with-synthetic/mitbih_with_syntetic_train.csv'
+    test_csv_path = '../input/mitbih-with-synthetic/mitbih_with_syntetic_test.csv'
+
+def seed_everything(seed: int):
+    random.seed(seed)
+    np.random.seed(seed)
+    torch.manual_seed(seed)
+    if torch.cuda.is_available():
+        torch.cuda.manual_seed(seed)
+        
+        
+if __name__ == '__main__':        
+    config = Config()
+    seed_everything(config.seed)