--- a +++ b/ClassificationSVM.m @@ -0,0 +1,74 @@ +clear;clc; +%% 载入数据; +fprintf('Loading data...\n'); +tic; +load('N_dat.mat'); +load('L_dat.mat'); +load('R_dat.mat'); +load('V_dat.mat'); +fprintf('Finished!\n'); +toc; +fprintf('=============================================================\n'); +%% 控制使用数据量,每一类5000,并生成标签; +fprintf('Data preprocessing...\n'); +tic; +Nb=Nb(1:5000,:);Label1=ones(1,5000);%Label1=repmat([1;0;0;0],1,5000); +Vb=Vb(1:5000,:);Label2=ones(1,5000)*2;%Label2=repmat([0;1;0;0],1,5000); +Rb=Rb(1:5000,:);Label3=ones(1,5000)*3;%Label3=repmat([0;0;1;0],1,5000); +Lb=Lb(1:5000,:);Label4=ones(1,5000)*4;%Label4=repmat([0;0;0;1],1,5000); + +Data=[Nb;Vb;Rb;Lb]; +Label=[Label1,Label2,Label3,Label4]; +Label=Label'; + +clear Nb;clear Label1; +clear Rb;clear Label2; +clear Lb;clear Label3; +clear Vb;clear Label4; +Data=Data-repmat(mean(Data,2),1,250); %使信号的均值为0,去掉基线的影响; +fprintf('Finished!\n'); +toc; +fprintf('=============================================================\n'); +%% 利用小波变换提取系数特征,并切分训练和测试集; +fprintf('Feature extracting and normalizing...\n'); +tic; +Feature=[]; +for i=1:size(Data,1) + [C,L]=wavedec(Data(i,:),5,'db6'); %% db6小波5级分解; + Feature=[Feature;C(1:25)]; +end + +Nums=randperm(20000); %随机打乱样本顺序,达到随机选择训练测试样本的目的; +train_x=Feature(Nums(1:10000),:); +test_x=Feature(Nums(10001:end),:); +train_y=Label(Nums(1:10000)); +test_y=Label(Nums(10001:end)); + +[train_x,ps]=mapminmax(train_x',0,1); %利用mapminmax内建函数特征归一化到0,1之间; +test_x=mapminmax('apply',test_x',ps); +train_x=train_x';test_x=test_x'; +fprintf('Finished!\n'); +toc; +fprintf('=============================================================\n'); +%% 训练SVM,并测试效果; +fprintf('SVM training and testing...\n'); +tic; +model=libsvmtrain(train_y,train_x,'-c 2 -g 1'); %模型训练; +[ptest,~,~]=libsvmpredict(test_y,test_x,model); %模型预测; + +Correct_Predict=zeros(1,4); %统计各类准确率; +Class_Num=zeros(1,4); +Conf_Mat=zeros(4); +for i=1:10000 + Class_Num(test_y(i))=Class_Num(test_y(i))+1; + Conf_Mat(test_y(i),ptest(i))=Conf_Mat(test_y(i),ptest(i))+1; + if ptest(i)==test_y(i) + Correct_Predict(test_y(i))= Correct_Predict(test_y(i))+1; + end +end +ACCs=Correct_Predict./Class_Num; +fprintf('Accuracy_N = %.2f%%\n',ACCs(1)*100); +fprintf('Accuracy_V = %.2f%%\n',ACCs(2)*100); +fprintf('Accuracy_R = %.2f%%\n',ACCs(3)*100); +fprintf('Accuracy_L = %.2f%%\n',ACCs(4)*100); +toc;