--- a +++ b/README.md @@ -0,0 +1,54 @@ +# Inter- and intra- patient ECG heartbeat classification for arrhythmia detection: a sequence to sequence deep learning approach + +# Paper + Our paper can be downloaded from the [arxiv website](https://arxiv.org/pdf/1812.07421v2) + * The Network architecture +  + +## Requirements +* Python 2.7 +* tensorflow/tensorflow-gpu +* numpy +* scipy +* scikit-learn +* matplotlib +* imbalanced-learn (0.4.3) + +## Dataset +We evaluated our model using [the PhysioNet MIT-BIH Arrhythmia database](https://www.physionet.org/physiobank/database/mitdb/) +* To download our pre-processed datasets use [this link](https://drive.google.com/drive/folders/19bDrAqlSGQuNLRmA-7pQRU9R81gSuY70?usp=sharing), then put them into the "data" folder. +* Or you can follow the instructions of the readme file in the "data preprocessing_Matlab" folder to download the MIT-BIH database and perform data pre-processing. Then, put the pre-processed datasets into the "data" folder. + +## Train + +* Modify args settings in seq_seq_annot_aami.py for the intra-patient ECG heartbeat classification +* Modify args settings in seq_seq_annot_DS1DS2.py for the inter-patient ECG heartbeat classification + +* Run each file to reproduce the model described in the paper, use: + +``` +python seq_seq_annot_aami.py --data_dir data/s2s_mitbih_aami --epochs 500 +``` +``` +python seq_seq_annot_DS1DS2.py --data_dir data/s2s_mitbih_aami_DS1DS2 --epochs 500 +``` +## Results +  +## Citation +If you find it useful, please cite our paper as follows: + +``` +@article{mousavi2018inter, + title={Inter-and intra-patient ECG heartbeat classification for arrhythmia detection: a sequence to sequence deep learning approach}, + author={Mousavi, Sajad and Afghah, Fatemeh}, + journal={arXiv preprint arXiv:1812.07421}, + year={2018} +} +``` + +## References + [deepschool.io](https://github.com/sachinruk/deepschool.io/blob/master/DL-Keras_Tensorflow) + +## Licence +For academtic and non-commercial usage +