Switch to unified view

a/README.md b/README.md
1
# Inter- and intra- patient ECG heartbeat classification for arrhythmia detection: a sequence to sequence deep learning approach
1
# Inter- and intra- patient ECG heartbeat classification for arrhythmia detection: a sequence to sequence deep learning approach
2
2
3
# Paper
3
# Paper
4
 Our paper can be downloaded from the [arxiv website](https://arxiv.org/pdf/1812.07421v2)
4
 Our paper can be downloaded from the [arxiv website](https://arxiv.org/pdf/1812.07421v2)
5
 * The Network architecture
5
 * The Network architecture
6
  ![Alt text](/images/seq2seq_b.jpg)
6
 
7
 
8
## Requirements
7
## Requirements
9
* Python 2.7
8
* Python 2.7
10
* tensorflow/tensorflow-gpu
9
* tensorflow/tensorflow-gpu
11
* numpy
10
* numpy
12
* scipy
11
* scipy
13
* scikit-learn
12
* scikit-learn
14
* matplotlib
13
* matplotlib
15
* imbalanced-learn (0.4.3)
14
* imbalanced-learn (0.4.3)
16
15
17
## Dataset
16
## Dataset
18
We evaluated our model using [the PhysioNet MIT-BIH Arrhythmia database](https://www.physionet.org/physiobank/database/mitdb/)
17
We evaluated our model using [the PhysioNet MIT-BIH Arrhythmia database](https://www.physionet.org/physiobank/database/mitdb/)
19
* To download our pre-processed datasets use [this link](https://drive.google.com/drive/folders/19bDrAqlSGQuNLRmA-7pQRU9R81gSuY70?usp=sharing), then put them into the "data" folder.
18
* To download our pre-processed datasets use [this link](https://drive.google.com/drive/folders/19bDrAqlSGQuNLRmA-7pQRU9R81gSuY70?usp=sharing), then put them into the "data" folder.
20
* Or you can follow the instructions of the readme file in the "data preprocessing_Matlab" folder to download the MIT-BIH database and perform data pre-processing. Then, put the pre-processed datasets into the "data" folder.
19
* Or you can follow the instructions of the readme file in the "data preprocessing_Matlab" folder to download the MIT-BIH database and perform data pre-processing. Then, put the pre-processed datasets into the "data" folder.
21
20
22
## Train
21
## Train
23
22
24
* Modify args settings in seq_seq_annot_aami.py for the intra-patient ECG heartbeat classification
23
* Modify args settings in seq_seq_annot_aami.py for the intra-patient ECG heartbeat classification
25
* Modify args settings in seq_seq_annot_DS1DS2.py for the inter-patient ECG heartbeat classification
24
* Modify args settings in seq_seq_annot_DS1DS2.py for the inter-patient ECG heartbeat classification
26
25
27
* Run each file to reproduce the model described in the paper, use:
26
* Run each file to reproduce the model described in the paper, use:
28
27
29
```
28
```
30
python seq_seq_annot_aami.py --data_dir data/s2s_mitbih_aami --epochs 500
29
python seq_seq_annot_aami.py --data_dir data/s2s_mitbih_aami --epochs 500
31
```
30
```
32
```
31
```
33
python seq_seq_annot_DS1DS2.py --data_dir data/s2s_mitbih_aami_DS1DS2 --epochs 500
32
python seq_seq_annot_DS1DS2.py --data_dir data/s2s_mitbih_aami_DS1DS2 --epochs 500
34
```
33
```
35
## Results
34
36
  ![Alt text](/images/results.jpg)
37
## Citation
35
## Citation
38
If you find it useful, please cite our paper as follows:
36
If you find it useful, please cite our paper as follows:
39
37
40
```
38
```
41
@article{mousavi2018inter,
39
@article{mousavi2018inter,
42
  title={Inter-and intra-patient ECG heartbeat classification for arrhythmia detection: a sequence to sequence deep learning approach},
40
  title={Inter-and intra-patient ECG heartbeat classification for arrhythmia detection: a sequence to sequence deep learning approach},
43
  author={Mousavi, Sajad and Afghah, Fatemeh},
41
  author={Mousavi, Sajad and Afghah, Fatemeh},
44
  journal={arXiv preprint arXiv:1812.07421},
42
  journal={arXiv preprint arXiv:1812.07421},
45
  year={2018}
43
  year={2018}
46
}
44
}
47
```
45
```
48
46
49
## References
47
## References
50
 [deepschool.io](https://github.com/sachinruk/deepschool.io/blob/master/DL-Keras_Tensorflow)
48
 [deepschool.io](https://github.com/sachinruk/deepschool.io/blob/master/DL-Keras_Tensorflow)
51
 
49
 
52
## Licence 
50
## Licence 
53
For academtic and non-commercial usage 
51
For academtic and non-commercial usage 
54
52