model = Sequential()
model.add(Conv2D(64, (3,3),strides = (1,1), input_shape = IMAGE_SIZE + [3],kernel_initializer='glorot_uniform'))
model.add(keras.layers.ELU())
model.add(BatchNormalization())
model.add(Conv2D(64, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
model.add(keras.layers.ELU())
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2)))
model.add(Conv2D(128, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
model.add(keras.layers.ELU())
model.add(BatchNormalization())
model.add(Conv2D(128, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
model.add(keras.layers.ELU())
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2)))
model.add(Conv2D(256, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
model.add(keras.layers.ELU())
model.add(BatchNormalization())
model.add(Conv2D(256, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
model.add(keras.layers.ELU())
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2)))
model.add(Flatten())
model.add(Dense(2048))
model.add(keras.layers.ELU())
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(7, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])