Diff of /model.py [000000] .. [9e019c]

Switch to unified view

a b/model.py
1
model = Sequential()
2
3
model.add(Conv2D(64, (3,3),strides = (1,1), input_shape = IMAGE_SIZE + [3],kernel_initializer='glorot_uniform'))
4
5
model.add(keras.layers.ELU())
6
7
model.add(BatchNormalization())
8
9
model.add(Conv2D(64, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
10
11
model.add(keras.layers.ELU())
12
13
model.add(BatchNormalization())
14
15
model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2)))
16
17
model.add(Conv2D(128, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
18
19
model.add(keras.layers.ELU())
20
21
model.add(BatchNormalization())
22
23
model.add(Conv2D(128, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
24
25
model.add(keras.layers.ELU())
26
27
model.add(BatchNormalization())
28
29
model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2)))
30
31
model.add(Conv2D(256, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
32
33
model.add(keras.layers.ELU())
34
35
model.add(BatchNormalization())
36
37
model.add(Conv2D(256, (3,3),strides = (1,1),kernel_initializer='glorot_uniform'))
38
39
model.add(keras.layers.ELU())
40
41
model.add(BatchNormalization())
42
43
model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2)))
44
45
model.add(Flatten())
46
47
model.add(Dense(2048))
48
49
model.add(keras.layers.ELU())
50
51
model.add(BatchNormalization())
52
53
model.add(Dropout(0.5))
54
55
model.add(Dense(7, activation='softmax'))
56
57
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])