|
a |
|
b/model.py |
|
|
1 |
model = Sequential() |
|
|
2 |
|
|
|
3 |
model.add(Conv2D(64, (3,3),strides = (1,1), input_shape = IMAGE_SIZE + [3],kernel_initializer='glorot_uniform')) |
|
|
4 |
|
|
|
5 |
model.add(keras.layers.ELU()) |
|
|
6 |
|
|
|
7 |
model.add(BatchNormalization()) |
|
|
8 |
|
|
|
9 |
model.add(Conv2D(64, (3,3),strides = (1,1),kernel_initializer='glorot_uniform')) |
|
|
10 |
|
|
|
11 |
model.add(keras.layers.ELU()) |
|
|
12 |
|
|
|
13 |
model.add(BatchNormalization()) |
|
|
14 |
|
|
|
15 |
model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2))) |
|
|
16 |
|
|
|
17 |
model.add(Conv2D(128, (3,3),strides = (1,1),kernel_initializer='glorot_uniform')) |
|
|
18 |
|
|
|
19 |
model.add(keras.layers.ELU()) |
|
|
20 |
|
|
|
21 |
model.add(BatchNormalization()) |
|
|
22 |
|
|
|
23 |
model.add(Conv2D(128, (3,3),strides = (1,1),kernel_initializer='glorot_uniform')) |
|
|
24 |
|
|
|
25 |
model.add(keras.layers.ELU()) |
|
|
26 |
|
|
|
27 |
model.add(BatchNormalization()) |
|
|
28 |
|
|
|
29 |
model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2))) |
|
|
30 |
|
|
|
31 |
model.add(Conv2D(256, (3,3),strides = (1,1),kernel_initializer='glorot_uniform')) |
|
|
32 |
|
|
|
33 |
model.add(keras.layers.ELU()) |
|
|
34 |
|
|
|
35 |
model.add(BatchNormalization()) |
|
|
36 |
|
|
|
37 |
model.add(Conv2D(256, (3,3),strides = (1,1),kernel_initializer='glorot_uniform')) |
|
|
38 |
|
|
|
39 |
model.add(keras.layers.ELU()) |
|
|
40 |
|
|
|
41 |
model.add(BatchNormalization()) |
|
|
42 |
|
|
|
43 |
model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2))) |
|
|
44 |
|
|
|
45 |
model.add(Flatten()) |
|
|
46 |
|
|
|
47 |
model.add(Dense(2048)) |
|
|
48 |
|
|
|
49 |
model.add(keras.layers.ELU()) |
|
|
50 |
|
|
|
51 |
model.add(BatchNormalization()) |
|
|
52 |
|
|
|
53 |
model.add(Dropout(0.5)) |
|
|
54 |
|
|
|
55 |
model.add(Dense(7, activation='softmax')) |
|
|
56 |
|
|
|
57 |
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) |