--- a +++ b/model.py @@ -0,0 +1,57 @@ +model = Sequential() + +model.add(Conv2D(64, (3,3),strides = (1,1), input_shape = IMAGE_SIZE + [3],kernel_initializer='glorot_uniform')) + +model.add(keras.layers.ELU()) + +model.add(BatchNormalization()) + +model.add(Conv2D(64, (3,3),strides = (1,1),kernel_initializer='glorot_uniform')) + +model.add(keras.layers.ELU()) + +model.add(BatchNormalization()) + +model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2))) + +model.add(Conv2D(128, (3,3),strides = (1,1),kernel_initializer='glorot_uniform')) + +model.add(keras.layers.ELU()) + +model.add(BatchNormalization()) + +model.add(Conv2D(128, (3,3),strides = (1,1),kernel_initializer='glorot_uniform')) + +model.add(keras.layers.ELU()) + +model.add(BatchNormalization()) + +model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2))) + +model.add(Conv2D(256, (3,3),strides = (1,1),kernel_initializer='glorot_uniform')) + +model.add(keras.layers.ELU()) + +model.add(BatchNormalization()) + +model.add(Conv2D(256, (3,3),strides = (1,1),kernel_initializer='glorot_uniform')) + +model.add(keras.layers.ELU()) + +model.add(BatchNormalization()) + +model.add(MaxPool2D(pool_size=(2, 2), strides= (2,2))) + +model.add(Flatten()) + +model.add(Dense(2048)) + +model.add(keras.layers.ELU()) + +model.add(BatchNormalization()) + +model.add(Dropout(0.5)) + +model.add(Dense(7, activation='softmax')) + +model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])