from numpy.random import seed
seed(1017)
from tensorflow import set_random_seed
set_random_seed(1017)
import os
from glob import glob
from collections import OrderedDict
import mne
from mne.io import RawArray
from mne import read_evokeds, read_source_spaces, compute_covariance
from mne import channels, find_events, concatenate_raws
from mne import pick_types, viz, io, Epochs, create_info
from mne import pick_channels, concatenate_epochs
from mne.datasets import sample
from mne.simulation import simulate_sparse_stc, simulate_raw
from mne.channels import read_montage
from mne.time_frequency import tfr_morlet
import numpy as np
from numpy import genfromtxt
import pandas as pd
pd.options.display.precision = 4
pd.options.display.max_columns = None
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (12,12)
import keras
from keras import regularizers
from keras.callbacks import TensorBoard
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Activation, Input
from keras.layers import Flatten, Conv2D, MaxPooling2D, LSTM
from keras.layers import BatchNormalization, Conv3D, MaxPooling3D
from sklearn.utils import class_weight
from sklearn.model_selection import train_test_split
class Feats:
def __init__(self, num_classes=2, class_weights=[1,1], input_shape=[16,],
new_times=1, model_type='1',
x_train=1, y_train=1, x_test=1, y_test=1, x_val=1, y_val=1):
self.num_classes = num_classes
self.class_weights = class_weights
self.input_shape = input_shape
self.new_times = new_times
self.model_type = model_type
self.x_train = x_train
self.y_train = y_train
self.x_test = x_test
self.y_test = y_test
self.x_val = x_val
self.y_val = y_val
def LoadBVData(sub,session,data_dir,exp):
#for isub,sub in enumerate(subs):
print('Loading data for subject number: ' + sub)
fname = data_dir + exp + '/' + sub + '_' + exp + '_' + session + '.vhdr'
raw,sfreq = loadBV(fname,plot_sensors=False,plot_raw=False,
plot_raw_psd=False,stim_channel=True)
return raw
def loadBV(filename, plot_sensors=True, plot_raw=True,
plot_raw_psd=True, stim_channel=False, ):
"""Load in recorder data files."""
#load .vhdr files from brain vision recorder
raw = io.read_raw_brainvision(filename,
montage='standard_1020',
eog=('HEOG', 'VEOG'),
preload=True,stim_channel=stim_channel)
#set sampling rate
sfreq = raw.info['sfreq']
print('Sampling Rate = ' + str(sfreq))
#load channel locations
print('Loading Channel Locations')
if plot_sensors:
raw.plot_sensors(show_names='True')
##Plot raw data
if plot_raw:
raw.plot(n_channels=16, block=True)
#plot raw psd
if plot_raw_psd:
raw.plot_psd(fmin=.1, fmax=100 )
return raw, sfreq
def LoadMuseData(subs, nsesh, data_dir, load_verbose=False, sfreq=256.):
nsubs = len(subs)
raw = []
print('Loading Data')
for isub,sub in enumerate(subs):
print('Subject number ' + str(isub+1) + '/' + str(nsubs))
for isesh in range(nsesh):
print(' Session number ' + str(isesh+1) + '/' + str(nsesh))
raw.append(muse_load_data(data_dir, sfreq=sfreq ,subject_nb=sub,
session_nb=isesh+1,verbose=load_verbose))
raw = concatenate_raws(raw)
return raw
#from eeg-notebooks load_data
def muse_load_data(data_dir, subject_nb=1, session_nb=1, sfreq=256.,
ch_ind=[0, 1, 2, 3], stim_ind=5, replace_ch_names=None,
verbose=1):
"""Load CSV files from the /data directory into a Raw object.
Args:
data_dir (str): directory inside /data that contains the
CSV files to load, e.g., 'auditory/P300'
Keyword Args:
subject_nb (int or str): subject number. If 'all', load all
subjects.
session_nb (int or str): session number. If 'all', load all
sessions.
sfreq (float): EEG sampling frequency
ch_ind (list): indices of the EEG channels to keep
stim_ind (int): index of the stim channel
replace_ch_names (dict or None): dictionary containing a mapping to
rename channels. Useful when an external electrode was used.
Returns:
(mne.io.array.array.RawArray): loaded EEG
"""
if subject_nb == 'all':
subject_nb = '*'
if session_nb == 'all':
session_nb = '*'
data_path = os.path.join(
'eeg-notebooks_v0.1/data', data_dir,
'subject{}/session{}/*.csv'.format(subject_nb, session_nb))
fnames = glob(data_path)
return load_muse_csv_as_raw(fnames,
sfreq=sfreq,
ch_ind=ch_ind,
stim_ind=stim_ind,
replace_ch_names=replace_ch_names,
verbose=verbose)
#from eeg-notebooks
def load_muse_csv_as_raw(filename, sfreq=256., ch_ind=[0, 1, 2, 3],
stim_ind=5, replace_ch_names=None, verbose=1):
"""Load CSV files into a Raw object.
Args:
filename (str or list): path or paths to CSV files to load
Keyword Args:
subject_nb (int or str): subject number. If 'all', load all
subjects.
session_nb (int or str): session number. If 'all', load all
sessions.
sfreq (float): EEG sampling frequency
ch_ind (list): indices of the EEG channels to keep
stim_ind (int): index of the stim channel
replace_ch_names (dict or None): dictionary containing a mapping to
rename channels. Useful when an external electrode was used.
Returns:
(mne.io.array.array.RawArray): loaded EEG
"""
n_channel = len(ch_ind)
raw = []
for fname in filename:
# read the file
data = pd.read_csv(fname, index_col=0)
# name of each channels
ch_names = list(data.columns)[0:n_channel] + ['Stim']
if replace_ch_names is not None:
ch_names = [c if c not in replace_ch_names.keys()
else replace_ch_names[c] for c in ch_names]
# type of each channels
ch_types = ['eeg'] * n_channel + ['stim']
montage = read_montage('standard_1005')
# get data and exclude Aux channel
data = data.values[:, ch_ind + [stim_ind]].T
# convert in Volts (from uVolts)
data[:-1] *= 1e-6
# create MNE object
info = create_info(ch_names=ch_names, ch_types=ch_types,
sfreq=sfreq, montage=montage, verbose=verbose)
raw.append(RawArray(data=data, info=info, verbose=verbose))
# concatenate all raw objects
if len(raw) > 0:
raws = concatenate_raws(raw, verbose=verbose)
else:
print('No files for subject with filename ' + str(filename))
raws = raw
return raws
def SimulateRaw(amp1 = 50, amp2 = 100, freq = 1., batch=1):
"""Create simulated raw data and events of two kinds
Keyword Args:
amp1 (float): amplitude of first condition effect
amp2 (float): ampltiude of second condition effect,
null hypothesis amp1=amp2
freq (float): Frequency of simulated signal 1. for ERP 10. for alpha
batch (int): number of groups of 255 trials in each condition
Returns:
raw: simulated EEG MNE raw object with two event types
event_id: dict of the two events for input to PreProcess()
"""
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
trans_fname = data_path + '/MEG/sample/sample_audvis_raw-trans.fif'
src_fname = data_path + '/subjects/sample/bem/sample-oct-6-src.fif'
bem_fname = (data_path +
'/subjects/sample/bem/sample-5120-5120-5120-bem-sol.fif')
raw_single = mne.io.read_raw_fif(raw_fname,preload=True)
raw_single.set_eeg_reference(projection=True)
raw_single = raw_single.crop(0., 255.)
raw_single = raw_single.copy().pick_types(meg=False, eeg=True, eog=True, stim=True)
#concatenate 4 raws together to make 1000 trials
raw = []
for i in range(batch):
raw.append(raw_single)
raw = concatenate_raws(raw)
epoch_duration = 1.
def data_fun(amp, freq):
"""Create function to create fake signal"""
def data_fun_inner(times):
"""Create fake signal with no noise"""
n_samp = len(times)
window = np.zeros(n_samp)
start, stop = [int(ii * float(n_samp) / 2)
for ii in (0, 1)]
window[start:stop] = np.hamming(stop - start)
data = amp * 1e-9 * np.sin(2. * np.pi * freq * times)
data *= window
return data
return data_fun_inner
times = raw.times[:int(raw.info['sfreq'] * epoch_duration)]
src = read_source_spaces(src_fname)
stc_zero = simulate_sparse_stc(src, n_dipoles=1, times=times,
data_fun=data_fun(amp1,freq), random_state=0)
stc_one = simulate_sparse_stc(src, n_dipoles=1, times=times,
data_fun=data_fun(amp2,freq), random_state=0)
raw_sim_zero = simulate_raw(raw, stc_zero, trans_fname, src, bem_fname,
cov='simple', blink=True, n_jobs=1, verbose=True)
raw_sim_one = simulate_raw(raw, stc_one, trans_fname, src, bem_fname,
cov='simple', blink=True, n_jobs=1, verbose=True)
stim_pick = raw_sim_one.info['ch_names'].index('STI 014')
raw_sim_one._data[stim_pick][np.where(raw_sim_one._data[stim_pick]==1)] = 2
raw = concatenate_raws([raw_sim_zero, raw_sim_one])
event_id = {'CondZero': 1,'CondOne': 2}
return raw, event_id
def mastoidReref(raw):
ref_idx = pick_channels(raw.info['ch_names'],['M2'])
eeg_idx = pick_types(raw.info,eeg=True)
raw._data[eeg_idx,:] = raw._data[eeg_idx,:] - raw._data[ref_idx,:] * .5 ;
return raw
def GrattonEmcpRaw(raw):
raw_eeg = raw.copy().pick_types(eeg=True)[:][0]
raw_eog = raw.copy().pick_types(eog=True)[:][0]
b = np.linalg.solve(np.dot(raw_eog,raw_eog.T), np.dot(raw_eog,raw_eeg.T))
eeg_corrected = (raw_eeg.T - np.dot(raw_eog.T,b)).T
raw_new = raw.copy()
raw_new._data[pick_types(raw.info,eeg=True),:] = eeg_corrected
return raw_new
def GrattonEmcpEpochs(epochs):
'''
# Correct EEG data for EOG artifacts with regression
# INPUT - MNE epochs object (with eeg and eog channels)
# OUTPUT - MNE epochs object (with eeg corrected)
# After: Gratton,Coles,Donchin, 1983
# -compute the ERP in each condition
# -subtract ERP from each trial
# -subtract baseline (mean over all epoch)
# -predict eye channel remainder from eeg remainder
# -use coefficients to subtract eog from eeg
'''
event_names = ['A_error','B_error']
i = 0
for key, value in sorted(epochs.event_id.items(), key=lambda x: (x[1], x[0])):
event_names[i] = key
i += 1
#select the correct channels and data
eeg_chans = pick_types(epochs.info, eeg=True, eog=False)
eog_chans = pick_types(epochs.info, eeg=False, eog=True)
original_data = epochs._data
#subtract the average over trials from each trial
rem = {}
for event in event_names:
data = epochs[event]._data
avg = np.mean(epochs[event]._data,axis=0)
rem[event] = data-avg
#concatenate trials together of different types
## then put them all back together in X (regression on all at once)
allrem = np.concatenate([rem[event] for event in event_names])
#separate eog and eeg
X = allrem[:,eeg_chans,:]
Y = allrem[:,eog_chans,:]
#subtract mean over time from every trial/channel
X = (X.T - np.mean(X,2).T).T
Y = (Y.T - np.mean(Y,2).T).T
#move electrodes first
X = np.moveaxis(X,0,1)
Y = np.moveaxis(Y,0,1)
#make 2d and compute regression
X = np.reshape(X,(X.shape[0],np.prod(X.shape[1:])))
Y = np.reshape(Y,(Y.shape[0],np.prod(Y.shape[1:])))
b = np.linalg.solve(np.dot(Y,Y.T), np.dot(Y,X.T))
#get original data and electrodes first for matrix math
raw_eeg = np.moveaxis(original_data[:,eeg_chans,:],0,1)
raw_eog = np.moveaxis(original_data[:,eog_chans,:],0,1)
#subtract weighted eye channels from eeg channels
eeg_corrected = (raw_eeg.T - np.dot(raw_eog.T,b)).T
#move back to match epochs
eeg_corrected = np.moveaxis(eeg_corrected,0,1)
#copy original epochs and replace with corrected data
epochs_new = epochs.copy()
epochs_new._data[:,eeg_chans,:] = eeg_corrected
return epochs_new
def PreProcess(raw, event_id, plot_psd=False, filter_data=True,
filter_range=(1,30), plot_events=False, epoch_time=(-.2,1),
baseline=(-.2,0), rej_thresh_uV=200, rereference=False,
emcp_raw=False, emcp_epochs=False, epoch_decim=1, plot_electrodes=False,
plot_erp=False):
sfreq = raw.info['sfreq']
#create new output freq for after epoch or wavelet decim
nsfreq = sfreq/epoch_decim
tmin=epoch_time[0]
tmax=epoch_time[1]
if filter_range[1] > nsfreq:
filter_range[1] = nsfreq/2.5 #lower than 2 to avoid aliasing from decim??
#pull event names in order of trigger number
event_names = ['A_error','B_error']
i = 0
for key, value in sorted(event_id.items(), key=lambda x: (x[1], x[0])):
event_names[i] = key
i += 1
#Filtering
if rereference:
print('Rerefering to average mastoid')
raw = mastoidReref(raw)
if filter_data:
print('Filtering Data Between ' + str(filter_range[0]) +
' and ' + str(filter_range[1]) + ' Hz.')
raw.filter(filter_range[0],filter_range[1],
method='iir', verbose='WARNING' )
if plot_psd:
raw.plot_psd(fmin=filter_range[0], fmax=nsfreq/2 )
#Eye Correction
if emcp_raw:
print('Raw Eye Movement Correction')
raw = GrattonEmcpRaw(raw)
#Epoching
events = find_events(raw,shortest_event=1)
color = {1: 'red', 2: 'black'}
#artifact rejection
rej_thresh = rej_thresh_uV*1e-6
#plot event timing
if plot_events:
viz.plot_events(events, sfreq, raw.first_samp, color=color,
event_id=event_id)
#Construct events - Main function from MNE
epochs = Epochs(raw, events=events, event_id=event_id,
tmin=tmin, tmax=tmax, baseline=baseline,
preload=True,reject={'eeg':rej_thresh},
verbose=False, decim=epoch_decim)
print('Remaining Trials: ' + str(len(epochs)))
#Gratton eye movement correction procedure on epochs
if emcp_epochs:
print('Epochs Eye Movement Correct')
epochs = GrattonEmcpEpochs(epochs)
## plot ERP at each electrode
evoked_dict = {event_names[0]:epochs[event_names[0]].average(),
event_names[1]:epochs[event_names[1]].average()}
# butterfly plot
if plot_electrodes:
picks = pick_types(evoked_dict[event_names[0]].info, meg=False, eeg=True, eog=False)
fig_zero = evoked_dict[event_names[0]].plot(spatial_colors=True,picks=picks)
fig_zero = evoked_dict[event_names[1]].plot(spatial_colors=True,picks=picks)
# plot ERP in each condition on same plot
if plot_erp:
#find the electrode most miximal on the head (highest in z)
picks = np.argmax([evoked_dict[event_names[0]].info['chs'][i]['loc'][2]
for i in range(len(evoked_dict[event_names[0]].info['chs']))])
colors = {event_names[0]:"Red",event_names[1]:"Blue"}
viz.plot_compare_evokeds(evoked_dict,colors=colors,
picks=picks,split_legend=True)
return epochs
def FeatureEngineer(epochs, model_type='NN',
frequency_domain=False,
normalization=False, electrode_median=False,
wavelet_decim=1, flims=(3,30), include_phase=False,
f_bins=20, wave_cycles=3,
wavelet_electrodes = [11,12,13,14,15],
spect_baseline=[-1,-.5],
test_split = 0.2, val_split = 0.2,
random_seed=1017, watermark = False):
"""
Takes epochs object as
input and settings,
outputs feats(training, test and val data option to use frequency or time domain)
TODO: take tfr? or autoencoder encoded object?
FeatureEngineer(epochs, model_type='NN',
frequency_domain=False,
normalization=False, electrode_median=False,
wavelet_decim=1, flims=(3,30), include_phase=False,
f_bins=20, wave_cycles=3,
wavelet_electrodes = [11,12,13,14,15],
spect_baseline=[-1,-.5],
test_split = 0.2, val_split = 0.2,
random_seed=1017, watermark = False):
"""
np.random.seed(random_seed)
#pull event names in order of trigger number
epochs.event_id = {'cond0':1, 'cond1':2}
event_names = ['cond0','cond1']
i = 0
for key, value in sorted(epochs.event_id.items(),
key=lambda item: (item[1],item[0])):
event_names[i] = key
i += 1
#Create feats object for output
feats = Feats()
feats.num_classes = len(epochs.event_id)
feats.model_type = model_type
if frequency_domain:
print('Constructing Frequency Domain Features')
#list of frequencies to output
f_low = flims[0]
f_high = flims[1]
frequencies = np.linspace(f_low, f_high, f_bins, endpoint=True)
#option to select all electrodes for fft
if wavelet_electrodes == 'all':
wavelet_electrodes = pick_types(epochs.info,eeg=True,eog=False)
#type of output from wavelet analysis
if include_phase:
tfr_output_type = 'complex'
else:
tfr_output_type = 'power'
tfr_dict = {}
for event in event_names:
print('Computing Morlet Wavelets on ' + event)
tfr_temp = tfr_morlet(epochs[event], freqs=frequencies,
n_cycles=wave_cycles, return_itc=False,
picks=wavelet_electrodes, average=False,
decim=wavelet_decim, output=tfr_output_type)
# Apply spectral baseline and find stim onset time
tfr_temp = tfr_temp.apply_baseline(spect_baseline,mode='mean')
stim_onset = np.argmax(tfr_temp.times>0)
# Reshape power output and save to tfr dict
power_out_temp = np.moveaxis(tfr_temp.data[:,:,:,stim_onset:],1,3)
power_out_temp = np.moveaxis(power_out_temp,1,2)
print(event + ' trials: ' + str(len(power_out_temp)))
tfr_dict[event] = power_out_temp
#reshape times (sloppy but just use the last temp tfr)
feats.new_times = tfr_temp.times[stim_onset:]
for event in event_names:
print(event + ' Time Points: ' + str(len(feats.new_times)))
print(event + ' Frequencies: ' + str(len(tfr_temp.freqs)))
#Construct X and Y
for ievent,event in enumerate(event_names):
if ievent == 0:
X = tfr_dict[event]
Y_class = np.zeros(len(tfr_dict[event]))
else:
X = np.append(X,tfr_dict[event],0)
Y_class = np.append(Y_class,np.ones(len(tfr_dict[event]))*ievent,0)
#concatenate real and imaginary data
if include_phase:
print('Concatenating the real and imaginary components')
X = np.append(np.real(X),np.imag(X),2)
#compute median over electrodes to decrease features
if electrode_median:
print('Computing Median over electrodes')
X = np.expand_dims(np.median(X,axis=len(X.shape)-1),2)
#reshape for various models
if model_type == 'NN' or model_type == 'LSTM':
X = np.reshape(X, (X.shape[0], X.shape[1], np.prod(X.shape[2:])))
if model_type == 'CNN3D':
X = np.expand_dims(X,4)
if model_type == 'AUTO' or model_type == 'AUTODeep':
print('Auto model reshape')
X = np.reshape(X, (X.shape[0],np.prod(X.shape[1:])))
if not frequency_domain:
print('Constructing Time Domain Features')
#if using muse aux port as eeg must label it as such
eeg_chans = pick_types(epochs.info,eeg=True,eog=False)
#put channels last, remove eye and stim
X = np.moveaxis(epochs._data[:,eeg_chans,:],1,2);
#take post baseline only
stim_onset = np.argmax(epochs.times>0)
feats.new_times = epochs.times[stim_onset:]
X = X[:,stim_onset:,:]
#convert markers to class
#requires markers to be 1 and 2 in data file?
#This probably is not robust to other marker numbers
Y_class = epochs.events[:,2]-1 #subtract 1 to make 0 and 1
#median over electrodes to reduce features
if electrode_median:
print('Computing Median over electrodes')
X = np.expand_dims(np.median(X,axis=len(X.shape)-1),2)
## Model Reshapes:
# reshape for CNN
if model_type == 'CNN':
print('Size X before reshape for CNN: ' + str(X.shape))
X = np.expand_dims(X,3 )
print('Size X before reshape for CNN: ' + str(X.shape))
# reshape for CNN3D
if model_type == 'CNN3D':
print('Size X before reshape for CNN3D: ' + str(X.shape))
X = np.expand_dims(np.expand_dims(X,3),4)
print('Size X before reshape for CNN3D: ' + str(X.shape))
#reshape for autoencoder
if model_type == 'AUTO' or model_type == 'AUTODeep':
print('Size X before reshape for Auto: ' + str(X.shape))
X = np.reshape(X, (X.shape[0], np.prod(X.shape[1:])))
print('Size X after reshape for Auto: ' + str(X.shape))
#Normalize X - TODO: need to save mean and std for future test + val
if normalization:
print('Normalizing X')
X = (X - np.mean(X)) / np.std(X)
# convert class vectors to one hot Y and recast X
Y = keras.utils.to_categorical(Y_class,feats.num_classes)
X = X.astype('float32')
# add watermark for testing models
if watermark:
X[Y[:,0]==0,0:2,] = 0
X[Y[:,0]==1,0:2,] = 1
# Compute model input shape
feats.input_shape = X.shape[1:]
# Split training test and validation data
val_prop = val_split / (1-test_split)
(feats.x_train,
feats.x_test,
feats.y_train,
feats.y_test) = train_test_split(X, Y,
test_size=test_split,
random_state=random_seed)
(feats.x_train,
feats.x_val,
feats.y_train,
feats.y_val) = train_test_split(feats.x_train, feats.y_train,
test_size=val_prop,
random_state=random_seed)
#compute class weights for uneven classes
y_ints = [y.argmax() for y in feats.y_train]
feats.class_weights = class_weight.compute_class_weight('balanced',
np.unique(y_ints),
y_ints)
#Print some outputs
print('Combined X Shape: ' + str(X.shape))
print('Combined Y Shape: ' + str(Y_class.shape))
print('Y Example (should be 1s & 0s): ' + str(Y_class[0:10]))
print('X Range: ' + str(np.min(X)) + ':' + str(np.max(X)))
print('Input Shape: ' + str(feats.input_shape))
print('x_train shape:', feats.x_train.shape)
print(feats.x_train.shape[0], 'train samples')
print(feats.x_test.shape[0], 'test samples')
print(feats.x_val.shape[0], 'validation samples')
print('Class Weights: ' + str(feats.class_weights))
return feats
def CreateModel(feats,units=[16,8,4,8,16], dropout=.25,
batch_norm=True, filt_size=3, pool_size=2):
print('Creating ' + feats.model_type + ' Model')
print('Input shape: ' + str(feats.input_shape))
nunits = len(units)
##---LSTM - Many to two, sequence of time to classes
#Units must be at least two
if feats.model_type == 'LSTM':
if nunits < 2:
print('Warning: Need at least two layers for LSTM')
model = Sequential()
model.add(LSTM(input_shape=(None, feats.input_shape[1]),
units=units[0], return_sequences=True))
if batch_norm:
model.add(BatchNormalization())
model.add(Activation('relu'))
if dropout:
model.add(Dropout(dropout))
if len(units) > 2:
for unit in units[1:-1]:
model.add(LSTM(units=unit,return_sequences=True))
if batch_norm:
model.add(BatchNormalization())
model.add(Activation('relu'))
if dropout:
model.add(Dropout(dropout))
model.add(LSTM(units=units[-1],return_sequences=False))
if batch_norm:
model.add(BatchNormalization())
model.add(Activation('relu'))
if dropout:
model.add(Dropout(dropout))
model.add(Dense(units=feats.num_classes))
model.add(Activation("softmax"))
##---DenseFeedforward Network
#Makes a hidden layer for each item in units
if feats.model_type == 'NN':
model = Sequential()
model.add(Flatten(input_shape=feats.input_shape))
for unit in units:
model.add(Dense(unit))
if batch_norm:
model.add(BatchNormalization())
model.add(Activation('relu'))
if dropout:
model.add(Dropout(dropout))
model.add(Dense(feats.num_classes, activation='softmax'))
##----Convolutional Network
if feats.model_type == 'CNN':
if nunits < 2:
print('Warning: Need at least two layers for CNN')
model = Sequential()
model.add(Conv2D(units[0], filt_size,
input_shape=feats.input_shape, padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size, padding='same'))
if nunits > 2:
for unit in units[1:-1]:
model.add(Conv2D(unit, filt_size, padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size, padding='same'))
model.add(Flatten())
model.add(Dense(units[-1]))
model.add(Activation('relu'))
model.add(Dense(feats.num_classes))
model.add(Activation('softmax'))
##----Convolutional Network
if feats.model_type == 'CNN3D':
if nunits < 2:
print('Warning: Need at least two layers for CNN')
model = Sequential()
model.add(Conv3D(units[0], filt_size,
input_shape=feats.input_shape, padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling3D(pool_size=pool_size, padding='same'))
if nunits > 2:
for unit in units[1:-1]:
model.add(Conv3D(unit, filt_size, padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling3D(pool_size=pool_size, padding='same'))
model.add(Flatten())
model.add(Dense(units[-1]))
model.add(Activation('relu'))
model.add(Dense(feats.num_classes))
model.add(Activation('softmax'))
## Autoencoder
#takes the first item in units for hidden layer size
if feats.model_type == 'AUTO':
encoding_dim = units[0]
input_data = Input(shape=(feats.input_shape[0],))
#,activity_regularizer=regularizers.l1(10e-5)
encoded = Dense(encoding_dim, activation='relu')(input_data)
decoded = Dense(feats.input_shape[0], activation='sigmoid')(encoded)
model = Model(input_data, decoded)
encoder = Model(input_data,encoded)
encoded_input = Input(shape=(encoding_dim,))
decoder_layer = model.layers[-1]
decoder = Model(encoded_input, decoder_layer(encoded_input))
#takes an odd number of layers > 1
#e.g. units = [64,32,16,32,64]
if feats.model_type == 'AUTODeep':
if nunits % 2 == 0:
print('Warning: Please enter odd number of layers into units')
half = nunits/2
midi = int(np.floor(half))
input_data = Input(shape=(feats.input_shape[0],))
encoded = Dense(units[0], activation='relu')(input_data)
#encoder decreases
if nunits >= 3:
for unit in units[1:midi]:
encoded = Dense(unit, activation='relu')(encoded)
#latent space
decoded = Dense(units[midi], activation='relu')(encoded)
#decoder increses
if nunits >= 3:
for unit in units[midi+1:-1]:
decoded = Dense(unit, activation='relu')(decoded)
decoded = Dense(units[-1], activation='relu')(decoded)
decoded = Dense(feats.input_shape[0], activation='sigmoid')(decoded)
model = Model(input_data, decoded)
encoder = Model(input_data,encoded)
encoded_input = Input(shape=(units[midi],))
if feats.model_type == 'AUTO' or feats.model_type == 'AUTODeep':
opt = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=None, decay=0.0, amsgrad=False)
model.compile(optimizer=opt, loss='mean_squared_error')
if ((feats.model_type == 'CNN') or
(feats.model_type == 'CNN3D') or
(feats.model_type == 'LSTM') or
(feats.model_type == 'NN')):
# initiate adam optimizer
opt = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=None, decay=0.0, amsgrad=False)
# Let's train the model using RMSprop
model.compile(loss='binary_crossentropy',
optimizer=opt,
metrics=['accuracy'])
encoder = []
model.summary()
return model, encoder
def TrainTestVal(model, feats, batch_size=2,
train_epochs=20, show_plots=True):
print('Training Model:')
# Train Model
if feats.model_type == 'AUTO' or feats.model_type == 'AUTODeep':
print('Training autoencoder:')
history = model.fit(feats.x_train, feats.x_train,
batch_size = batch_size,
epochs=train_epochs,
validation_data=(feats.x_val,feats.x_val),
shuffle=True,
verbose=True,
class_weight=feats.class_weights
)
# list all data in history
print(history.history.keys())
if show_plots:
# summarize history for loss
plt.semilogy(history.history['loss'])
plt.semilogy(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()
else:
history = model.fit(feats.x_train, feats.y_train,
batch_size=batch_size,
epochs=train_epochs,
validation_data=(feats.x_val, feats.y_val),
shuffle=True,
verbose=True,
class_weight=feats.class_weights
)
# list all data in history
print(history.history.keys())
if show_plots:
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()
# summarize history for loss
plt.semilogy(history.history['loss'])
plt.semilogy(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()
# Test on left out Test data
score, acc = model.evaluate(feats.x_test, feats.y_test,
batch_size=batch_size)
print(model.metrics_names)
print('Test loss:', score)
print('Test accuracy:', acc)
# Build a dictionary of data to return
data = {}
data['score'] = score
data['acc'] = acc
return model, data