|
a |
|
b/utils.py |
|
|
1 |
from numpy.random import seed |
|
|
2 |
seed(1017) |
|
|
3 |
from tensorflow import set_random_seed |
|
|
4 |
set_random_seed(1017) |
|
|
5 |
|
|
|
6 |
import os |
|
|
7 |
from glob import glob |
|
|
8 |
from collections import OrderedDict |
|
|
9 |
|
|
|
10 |
import mne |
|
|
11 |
from mne.io import RawArray |
|
|
12 |
from mne import read_evokeds, read_source_spaces, compute_covariance |
|
|
13 |
from mne import channels, find_events, concatenate_raws |
|
|
14 |
from mne import pick_types, viz, io, Epochs, create_info |
|
|
15 |
from mne import pick_channels, concatenate_epochs |
|
|
16 |
from mne.datasets import sample |
|
|
17 |
from mne.simulation import simulate_sparse_stc, simulate_raw |
|
|
18 |
from mne.channels import read_montage |
|
|
19 |
from mne.time_frequency import tfr_morlet |
|
|
20 |
|
|
|
21 |
import numpy as np |
|
|
22 |
from numpy import genfromtxt |
|
|
23 |
|
|
|
24 |
import pandas as pd |
|
|
25 |
pd.options.display.precision = 4 |
|
|
26 |
pd.options.display.max_columns = None |
|
|
27 |
|
|
|
28 |
import matplotlib.pyplot as plt |
|
|
29 |
plt.rcParams["figure.figsize"] = (12,12) |
|
|
30 |
|
|
|
31 |
import keras |
|
|
32 |
from keras import regularizers |
|
|
33 |
from keras.callbacks import TensorBoard |
|
|
34 |
from keras.models import Sequential, Model |
|
|
35 |
from keras.layers import Dense, Dropout, Activation, Input |
|
|
36 |
from keras.layers import Flatten, Conv2D, MaxPooling2D, LSTM |
|
|
37 |
from keras.layers import BatchNormalization, Conv3D, MaxPooling3D |
|
|
38 |
|
|
|
39 |
from sklearn.utils import class_weight |
|
|
40 |
from sklearn.model_selection import train_test_split |
|
|
41 |
|
|
|
42 |
|
|
|
43 |
class Feats: |
|
|
44 |
def __init__(self, num_classes=2, class_weights=[1,1], input_shape=[16,], |
|
|
45 |
new_times=1, model_type='1', |
|
|
46 |
x_train=1, y_train=1, x_test=1, y_test=1, x_val=1, y_val=1): |
|
|
47 |
self.num_classes = num_classes |
|
|
48 |
self.class_weights = class_weights |
|
|
49 |
self.input_shape = input_shape |
|
|
50 |
self.new_times = new_times |
|
|
51 |
self.model_type = model_type |
|
|
52 |
self.x_train = x_train |
|
|
53 |
self.y_train = y_train |
|
|
54 |
self.x_test = x_test |
|
|
55 |
self.y_test = y_test |
|
|
56 |
self.x_val = x_val |
|
|
57 |
self.y_val = y_val |
|
|
58 |
|
|
|
59 |
def LoadBVData(sub,session,data_dir,exp): |
|
|
60 |
#for isub,sub in enumerate(subs): |
|
|
61 |
print('Loading data for subject number: ' + sub) |
|
|
62 |
fname = data_dir + exp + '/' + sub + '_' + exp + '_' + session + '.vhdr' |
|
|
63 |
raw,sfreq = loadBV(fname,plot_sensors=False,plot_raw=False, |
|
|
64 |
plot_raw_psd=False,stim_channel=True) |
|
|
65 |
return raw |
|
|
66 |
|
|
|
67 |
def loadBV(filename, plot_sensors=True, plot_raw=True, |
|
|
68 |
plot_raw_psd=True, stim_channel=False, ): |
|
|
69 |
"""Load in recorder data files.""" |
|
|
70 |
|
|
|
71 |
|
|
|
72 |
#load .vhdr files from brain vision recorder |
|
|
73 |
raw = io.read_raw_brainvision(filename, |
|
|
74 |
montage='standard_1020', |
|
|
75 |
eog=('HEOG', 'VEOG'), |
|
|
76 |
preload=True,stim_channel=stim_channel) |
|
|
77 |
|
|
|
78 |
#set sampling rate |
|
|
79 |
sfreq = raw.info['sfreq'] |
|
|
80 |
print('Sampling Rate = ' + str(sfreq)) |
|
|
81 |
|
|
|
82 |
#load channel locations |
|
|
83 |
print('Loading Channel Locations') |
|
|
84 |
if plot_sensors: |
|
|
85 |
raw.plot_sensors(show_names='True') |
|
|
86 |
|
|
|
87 |
##Plot raw data |
|
|
88 |
if plot_raw: |
|
|
89 |
raw.plot(n_channels=16, block=True) |
|
|
90 |
|
|
|
91 |
#plot raw psd |
|
|
92 |
if plot_raw_psd: |
|
|
93 |
raw.plot_psd(fmin=.1, fmax=100 ) |
|
|
94 |
|
|
|
95 |
return raw, sfreq |
|
|
96 |
|
|
|
97 |
|
|
|
98 |
def LoadMuseData(subs, nsesh, data_dir, load_verbose=False, sfreq=256.): |
|
|
99 |
nsubs = len(subs) |
|
|
100 |
raw = [] |
|
|
101 |
print('Loading Data') |
|
|
102 |
for isub,sub in enumerate(subs): |
|
|
103 |
print('Subject number ' + str(isub+1) + '/' + str(nsubs)) |
|
|
104 |
for isesh in range(nsesh): |
|
|
105 |
print(' Session number ' + str(isesh+1) + '/' + str(nsesh)) |
|
|
106 |
raw.append(muse_load_data(data_dir, sfreq=sfreq ,subject_nb=sub, |
|
|
107 |
session_nb=isesh+1,verbose=load_verbose)) |
|
|
108 |
raw = concatenate_raws(raw) |
|
|
109 |
return raw |
|
|
110 |
|
|
|
111 |
|
|
|
112 |
#from eeg-notebooks load_data |
|
|
113 |
def muse_load_data(data_dir, subject_nb=1, session_nb=1, sfreq=256., |
|
|
114 |
ch_ind=[0, 1, 2, 3], stim_ind=5, replace_ch_names=None, |
|
|
115 |
verbose=1): |
|
|
116 |
"""Load CSV files from the /data directory into a Raw object. |
|
|
117 |
|
|
|
118 |
Args: |
|
|
119 |
data_dir (str): directory inside /data that contains the |
|
|
120 |
CSV files to load, e.g., 'auditory/P300' |
|
|
121 |
|
|
|
122 |
Keyword Args: |
|
|
123 |
subject_nb (int or str): subject number. If 'all', load all |
|
|
124 |
subjects. |
|
|
125 |
session_nb (int or str): session number. If 'all', load all |
|
|
126 |
sessions. |
|
|
127 |
sfreq (float): EEG sampling frequency |
|
|
128 |
ch_ind (list): indices of the EEG channels to keep |
|
|
129 |
stim_ind (int): index of the stim channel |
|
|
130 |
replace_ch_names (dict or None): dictionary containing a mapping to |
|
|
131 |
rename channels. Useful when an external electrode was used. |
|
|
132 |
|
|
|
133 |
Returns: |
|
|
134 |
(mne.io.array.array.RawArray): loaded EEG |
|
|
135 |
""" |
|
|
136 |
|
|
|
137 |
|
|
|
138 |
if subject_nb == 'all': |
|
|
139 |
subject_nb = '*' |
|
|
140 |
if session_nb == 'all': |
|
|
141 |
session_nb = '*' |
|
|
142 |
|
|
|
143 |
data_path = os.path.join( |
|
|
144 |
'eeg-notebooks_v0.1/data', data_dir, |
|
|
145 |
'subject{}/session{}/*.csv'.format(subject_nb, session_nb)) |
|
|
146 |
fnames = glob(data_path) |
|
|
147 |
|
|
|
148 |
return load_muse_csv_as_raw(fnames, |
|
|
149 |
sfreq=sfreq, |
|
|
150 |
ch_ind=ch_ind, |
|
|
151 |
stim_ind=stim_ind, |
|
|
152 |
replace_ch_names=replace_ch_names, |
|
|
153 |
verbose=verbose) |
|
|
154 |
|
|
|
155 |
|
|
|
156 |
#from eeg-notebooks |
|
|
157 |
def load_muse_csv_as_raw(filename, sfreq=256., ch_ind=[0, 1, 2, 3], |
|
|
158 |
stim_ind=5, replace_ch_names=None, verbose=1): |
|
|
159 |
"""Load CSV files into a Raw object. |
|
|
160 |
|
|
|
161 |
Args: |
|
|
162 |
filename (str or list): path or paths to CSV files to load |
|
|
163 |
|
|
|
164 |
Keyword Args: |
|
|
165 |
subject_nb (int or str): subject number. If 'all', load all |
|
|
166 |
subjects. |
|
|
167 |
session_nb (int or str): session number. If 'all', load all |
|
|
168 |
sessions. |
|
|
169 |
sfreq (float): EEG sampling frequency |
|
|
170 |
ch_ind (list): indices of the EEG channels to keep |
|
|
171 |
stim_ind (int): index of the stim channel |
|
|
172 |
replace_ch_names (dict or None): dictionary containing a mapping to |
|
|
173 |
rename channels. Useful when an external electrode was used. |
|
|
174 |
|
|
|
175 |
Returns: |
|
|
176 |
(mne.io.array.array.RawArray): loaded EEG |
|
|
177 |
""" |
|
|
178 |
|
|
|
179 |
n_channel = len(ch_ind) |
|
|
180 |
|
|
|
181 |
raw = [] |
|
|
182 |
for fname in filename: |
|
|
183 |
# read the file |
|
|
184 |
data = pd.read_csv(fname, index_col=0) |
|
|
185 |
|
|
|
186 |
# name of each channels |
|
|
187 |
ch_names = list(data.columns)[0:n_channel] + ['Stim'] |
|
|
188 |
|
|
|
189 |
if replace_ch_names is not None: |
|
|
190 |
ch_names = [c if c not in replace_ch_names.keys() |
|
|
191 |
else replace_ch_names[c] for c in ch_names] |
|
|
192 |
|
|
|
193 |
# type of each channels |
|
|
194 |
ch_types = ['eeg'] * n_channel + ['stim'] |
|
|
195 |
montage = read_montage('standard_1005') |
|
|
196 |
|
|
|
197 |
# get data and exclude Aux channel |
|
|
198 |
data = data.values[:, ch_ind + [stim_ind]].T |
|
|
199 |
|
|
|
200 |
# convert in Volts (from uVolts) |
|
|
201 |
data[:-1] *= 1e-6 |
|
|
202 |
|
|
|
203 |
# create MNE object |
|
|
204 |
info = create_info(ch_names=ch_names, ch_types=ch_types, |
|
|
205 |
sfreq=sfreq, montage=montage, verbose=verbose) |
|
|
206 |
raw.append(RawArray(data=data, info=info, verbose=verbose)) |
|
|
207 |
|
|
|
208 |
# concatenate all raw objects |
|
|
209 |
if len(raw) > 0: |
|
|
210 |
raws = concatenate_raws(raw, verbose=verbose) |
|
|
211 |
else: |
|
|
212 |
print('No files for subject with filename ' + str(filename)) |
|
|
213 |
raws = raw |
|
|
214 |
|
|
|
215 |
return raws |
|
|
216 |
|
|
|
217 |
|
|
|
218 |
def SimulateRaw(amp1 = 50, amp2 = 100, freq = 1., batch=1): |
|
|
219 |
|
|
|
220 |
"""Create simulated raw data and events of two kinds |
|
|
221 |
|
|
|
222 |
Keyword Args: |
|
|
223 |
amp1 (float): amplitude of first condition effect |
|
|
224 |
amp2 (float): ampltiude of second condition effect, |
|
|
225 |
null hypothesis amp1=amp2 |
|
|
226 |
freq (float): Frequency of simulated signal 1. for ERP 10. for alpha |
|
|
227 |
batch (int): number of groups of 255 trials in each condition |
|
|
228 |
Returns: |
|
|
229 |
raw: simulated EEG MNE raw object with two event types |
|
|
230 |
event_id: dict of the two events for input to PreProcess() |
|
|
231 |
""" |
|
|
232 |
|
|
|
233 |
|
|
|
234 |
data_path = sample.data_path() |
|
|
235 |
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' |
|
|
236 |
trans_fname = data_path + '/MEG/sample/sample_audvis_raw-trans.fif' |
|
|
237 |
src_fname = data_path + '/subjects/sample/bem/sample-oct-6-src.fif' |
|
|
238 |
bem_fname = (data_path + |
|
|
239 |
'/subjects/sample/bem/sample-5120-5120-5120-bem-sol.fif') |
|
|
240 |
|
|
|
241 |
|
|
|
242 |
raw_single = mne.io.read_raw_fif(raw_fname,preload=True) |
|
|
243 |
raw_single.set_eeg_reference(projection=True) |
|
|
244 |
raw_single = raw_single.crop(0., 255.) |
|
|
245 |
raw_single = raw_single.copy().pick_types(meg=False, eeg=True, eog=True, stim=True) |
|
|
246 |
|
|
|
247 |
#concatenate 4 raws together to make 1000 trials |
|
|
248 |
raw = [] |
|
|
249 |
for i in range(batch): |
|
|
250 |
raw.append(raw_single) |
|
|
251 |
raw = concatenate_raws(raw) |
|
|
252 |
|
|
|
253 |
epoch_duration = 1. |
|
|
254 |
|
|
|
255 |
def data_fun(amp, freq): |
|
|
256 |
"""Create function to create fake signal""" |
|
|
257 |
def data_fun_inner(times): |
|
|
258 |
"""Create fake signal with no noise""" |
|
|
259 |
n_samp = len(times) |
|
|
260 |
window = np.zeros(n_samp) |
|
|
261 |
start, stop = [int(ii * float(n_samp) / 2) |
|
|
262 |
for ii in (0, 1)] |
|
|
263 |
window[start:stop] = np.hamming(stop - start) |
|
|
264 |
data = amp * 1e-9 * np.sin(2. * np.pi * freq * times) |
|
|
265 |
data *= window |
|
|
266 |
return data |
|
|
267 |
return data_fun_inner |
|
|
268 |
|
|
|
269 |
times = raw.times[:int(raw.info['sfreq'] * epoch_duration)] |
|
|
270 |
src = read_source_spaces(src_fname) |
|
|
271 |
|
|
|
272 |
stc_zero = simulate_sparse_stc(src, n_dipoles=1, times=times, |
|
|
273 |
data_fun=data_fun(amp1,freq), random_state=0) |
|
|
274 |
stc_one = simulate_sparse_stc(src, n_dipoles=1, times=times, |
|
|
275 |
data_fun=data_fun(amp2,freq), random_state=0) |
|
|
276 |
|
|
|
277 |
raw_sim_zero = simulate_raw(raw, stc_zero, trans_fname, src, bem_fname, |
|
|
278 |
cov='simple', blink=True, n_jobs=1, verbose=True) |
|
|
279 |
raw_sim_one = simulate_raw(raw, stc_one, trans_fname, src, bem_fname, |
|
|
280 |
cov='simple', blink=True, n_jobs=1, verbose=True) |
|
|
281 |
|
|
|
282 |
stim_pick = raw_sim_one.info['ch_names'].index('STI 014') |
|
|
283 |
raw_sim_one._data[stim_pick][np.where(raw_sim_one._data[stim_pick]==1)] = 2 |
|
|
284 |
raw = concatenate_raws([raw_sim_zero, raw_sim_one]) |
|
|
285 |
event_id = {'CondZero': 1,'CondOne': 2} |
|
|
286 |
return raw, event_id |
|
|
287 |
|
|
|
288 |
|
|
|
289 |
def mastoidReref(raw): |
|
|
290 |
ref_idx = pick_channels(raw.info['ch_names'],['M2']) |
|
|
291 |
eeg_idx = pick_types(raw.info,eeg=True) |
|
|
292 |
raw._data[eeg_idx,:] = raw._data[eeg_idx,:] - raw._data[ref_idx,:] * .5 ; |
|
|
293 |
return raw |
|
|
294 |
|
|
|
295 |
def GrattonEmcpRaw(raw): |
|
|
296 |
raw_eeg = raw.copy().pick_types(eeg=True)[:][0] |
|
|
297 |
raw_eog = raw.copy().pick_types(eog=True)[:][0] |
|
|
298 |
b = np.linalg.solve(np.dot(raw_eog,raw_eog.T), np.dot(raw_eog,raw_eeg.T)) |
|
|
299 |
eeg_corrected = (raw_eeg.T - np.dot(raw_eog.T,b)).T |
|
|
300 |
raw_new = raw.copy() |
|
|
301 |
raw_new._data[pick_types(raw.info,eeg=True),:] = eeg_corrected |
|
|
302 |
return raw_new |
|
|
303 |
|
|
|
304 |
|
|
|
305 |
def GrattonEmcpEpochs(epochs): |
|
|
306 |
''' |
|
|
307 |
# Correct EEG data for EOG artifacts with regression |
|
|
308 |
# INPUT - MNE epochs object (with eeg and eog channels) |
|
|
309 |
# OUTPUT - MNE epochs object (with eeg corrected) |
|
|
310 |
# After: Gratton,Coles,Donchin, 1983 |
|
|
311 |
# -compute the ERP in each condition |
|
|
312 |
# -subtract ERP from each trial |
|
|
313 |
# -subtract baseline (mean over all epoch) |
|
|
314 |
# -predict eye channel remainder from eeg remainder |
|
|
315 |
# -use coefficients to subtract eog from eeg |
|
|
316 |
''' |
|
|
317 |
|
|
|
318 |
event_names = ['A_error','B_error'] |
|
|
319 |
i = 0 |
|
|
320 |
for key, value in sorted(epochs.event_id.items(), key=lambda x: (x[1], x[0])): |
|
|
321 |
event_names[i] = key |
|
|
322 |
i += 1 |
|
|
323 |
|
|
|
324 |
#select the correct channels and data |
|
|
325 |
eeg_chans = pick_types(epochs.info, eeg=True, eog=False) |
|
|
326 |
eog_chans = pick_types(epochs.info, eeg=False, eog=True) |
|
|
327 |
original_data = epochs._data |
|
|
328 |
|
|
|
329 |
#subtract the average over trials from each trial |
|
|
330 |
rem = {} |
|
|
331 |
for event in event_names: |
|
|
332 |
data = epochs[event]._data |
|
|
333 |
avg = np.mean(epochs[event]._data,axis=0) |
|
|
334 |
rem[event] = data-avg |
|
|
335 |
|
|
|
336 |
#concatenate trials together of different types |
|
|
337 |
## then put them all back together in X (regression on all at once) |
|
|
338 |
allrem = np.concatenate([rem[event] for event in event_names]) |
|
|
339 |
|
|
|
340 |
#separate eog and eeg |
|
|
341 |
X = allrem[:,eeg_chans,:] |
|
|
342 |
Y = allrem[:,eog_chans,:] |
|
|
343 |
|
|
|
344 |
#subtract mean over time from every trial/channel |
|
|
345 |
X = (X.T - np.mean(X,2).T).T |
|
|
346 |
Y = (Y.T - np.mean(Y,2).T).T |
|
|
347 |
|
|
|
348 |
#move electrodes first |
|
|
349 |
X = np.moveaxis(X,0,1) |
|
|
350 |
Y = np.moveaxis(Y,0,1) |
|
|
351 |
|
|
|
352 |
#make 2d and compute regression |
|
|
353 |
X = np.reshape(X,(X.shape[0],np.prod(X.shape[1:]))) |
|
|
354 |
Y = np.reshape(Y,(Y.shape[0],np.prod(Y.shape[1:]))) |
|
|
355 |
b = np.linalg.solve(np.dot(Y,Y.T), np.dot(Y,X.T)) |
|
|
356 |
|
|
|
357 |
#get original data and electrodes first for matrix math |
|
|
358 |
raw_eeg = np.moveaxis(original_data[:,eeg_chans,:],0,1) |
|
|
359 |
raw_eog = np.moveaxis(original_data[:,eog_chans,:],0,1) |
|
|
360 |
|
|
|
361 |
#subtract weighted eye channels from eeg channels |
|
|
362 |
eeg_corrected = (raw_eeg.T - np.dot(raw_eog.T,b)).T |
|
|
363 |
|
|
|
364 |
#move back to match epochs |
|
|
365 |
eeg_corrected = np.moveaxis(eeg_corrected,0,1) |
|
|
366 |
|
|
|
367 |
#copy original epochs and replace with corrected data |
|
|
368 |
epochs_new = epochs.copy() |
|
|
369 |
epochs_new._data[:,eeg_chans,:] = eeg_corrected |
|
|
370 |
|
|
|
371 |
return epochs_new |
|
|
372 |
|
|
|
373 |
|
|
|
374 |
def PreProcess(raw, event_id, plot_psd=False, filter_data=True, |
|
|
375 |
filter_range=(1,30), plot_events=False, epoch_time=(-.2,1), |
|
|
376 |
baseline=(-.2,0), rej_thresh_uV=200, rereference=False, |
|
|
377 |
emcp_raw=False, emcp_epochs=False, epoch_decim=1, plot_electrodes=False, |
|
|
378 |
plot_erp=False): |
|
|
379 |
|
|
|
380 |
sfreq = raw.info['sfreq'] |
|
|
381 |
#create new output freq for after epoch or wavelet decim |
|
|
382 |
nsfreq = sfreq/epoch_decim |
|
|
383 |
tmin=epoch_time[0] |
|
|
384 |
tmax=epoch_time[1] |
|
|
385 |
if filter_range[1] > nsfreq: |
|
|
386 |
filter_range[1] = nsfreq/2.5 #lower than 2 to avoid aliasing from decim?? |
|
|
387 |
|
|
|
388 |
#pull event names in order of trigger number |
|
|
389 |
event_names = ['A_error','B_error'] |
|
|
390 |
i = 0 |
|
|
391 |
for key, value in sorted(event_id.items(), key=lambda x: (x[1], x[0])): |
|
|
392 |
event_names[i] = key |
|
|
393 |
i += 1 |
|
|
394 |
|
|
|
395 |
#Filtering |
|
|
396 |
if rereference: |
|
|
397 |
print('Rerefering to average mastoid') |
|
|
398 |
raw = mastoidReref(raw) |
|
|
399 |
|
|
|
400 |
if filter_data: |
|
|
401 |
print('Filtering Data Between ' + str(filter_range[0]) + |
|
|
402 |
' and ' + str(filter_range[1]) + ' Hz.') |
|
|
403 |
raw.filter(filter_range[0],filter_range[1], |
|
|
404 |
method='iir', verbose='WARNING' ) |
|
|
405 |
|
|
|
406 |
if plot_psd: |
|
|
407 |
raw.plot_psd(fmin=filter_range[0], fmax=nsfreq/2 ) |
|
|
408 |
|
|
|
409 |
#Eye Correction |
|
|
410 |
if emcp_raw: |
|
|
411 |
print('Raw Eye Movement Correction') |
|
|
412 |
raw = GrattonEmcpRaw(raw) |
|
|
413 |
|
|
|
414 |
#Epoching |
|
|
415 |
events = find_events(raw,shortest_event=1) |
|
|
416 |
color = {1: 'red', 2: 'black'} |
|
|
417 |
#artifact rejection |
|
|
418 |
rej_thresh = rej_thresh_uV*1e-6 |
|
|
419 |
|
|
|
420 |
#plot event timing |
|
|
421 |
if plot_events: |
|
|
422 |
viz.plot_events(events, sfreq, raw.first_samp, color=color, |
|
|
423 |
event_id=event_id) |
|
|
424 |
|
|
|
425 |
#Construct events - Main function from MNE |
|
|
426 |
epochs = Epochs(raw, events=events, event_id=event_id, |
|
|
427 |
tmin=tmin, tmax=tmax, baseline=baseline, |
|
|
428 |
preload=True,reject={'eeg':rej_thresh}, |
|
|
429 |
verbose=False, decim=epoch_decim) |
|
|
430 |
print('Remaining Trials: ' + str(len(epochs))) |
|
|
431 |
|
|
|
432 |
#Gratton eye movement correction procedure on epochs |
|
|
433 |
if emcp_epochs: |
|
|
434 |
print('Epochs Eye Movement Correct') |
|
|
435 |
epochs = GrattonEmcpEpochs(epochs) |
|
|
436 |
|
|
|
437 |
## plot ERP at each electrode |
|
|
438 |
evoked_dict = {event_names[0]:epochs[event_names[0]].average(), |
|
|
439 |
event_names[1]:epochs[event_names[1]].average()} |
|
|
440 |
|
|
|
441 |
# butterfly plot |
|
|
442 |
if plot_electrodes: |
|
|
443 |
picks = pick_types(evoked_dict[event_names[0]].info, meg=False, eeg=True, eog=False) |
|
|
444 |
fig_zero = evoked_dict[event_names[0]].plot(spatial_colors=True,picks=picks) |
|
|
445 |
fig_zero = evoked_dict[event_names[1]].plot(spatial_colors=True,picks=picks) |
|
|
446 |
|
|
|
447 |
# plot ERP in each condition on same plot |
|
|
448 |
if plot_erp: |
|
|
449 |
#find the electrode most miximal on the head (highest in z) |
|
|
450 |
picks = np.argmax([evoked_dict[event_names[0]].info['chs'][i]['loc'][2] |
|
|
451 |
for i in range(len(evoked_dict[event_names[0]].info['chs']))]) |
|
|
452 |
colors = {event_names[0]:"Red",event_names[1]:"Blue"} |
|
|
453 |
viz.plot_compare_evokeds(evoked_dict,colors=colors, |
|
|
454 |
picks=picks,split_legend=True) |
|
|
455 |
|
|
|
456 |
return epochs |
|
|
457 |
|
|
|
458 |
|
|
|
459 |
|
|
|
460 |
def FeatureEngineer(epochs, model_type='NN', |
|
|
461 |
frequency_domain=False, |
|
|
462 |
normalization=False, electrode_median=False, |
|
|
463 |
wavelet_decim=1, flims=(3,30), include_phase=False, |
|
|
464 |
f_bins=20, wave_cycles=3, |
|
|
465 |
wavelet_electrodes = [11,12,13,14,15], |
|
|
466 |
spect_baseline=[-1,-.5], |
|
|
467 |
test_split = 0.2, val_split = 0.2, |
|
|
468 |
random_seed=1017, watermark = False): |
|
|
469 |
|
|
|
470 |
""" |
|
|
471 |
Takes epochs object as |
|
|
472 |
|
|
|
473 |
input and settings, |
|
|
474 |
outputs feats(training, test and val data option to use frequency or time domain) |
|
|
475 |
|
|
|
476 |
TODO: take tfr? or autoencoder encoded object? |
|
|
477 |
|
|
|
478 |
FeatureEngineer(epochs, model_type='NN', |
|
|
479 |
frequency_domain=False, |
|
|
480 |
normalization=False, electrode_median=False, |
|
|
481 |
wavelet_decim=1, flims=(3,30), include_phase=False, |
|
|
482 |
f_bins=20, wave_cycles=3, |
|
|
483 |
wavelet_electrodes = [11,12,13,14,15], |
|
|
484 |
spect_baseline=[-1,-.5], |
|
|
485 |
test_split = 0.2, val_split = 0.2, |
|
|
486 |
random_seed=1017, watermark = False): |
|
|
487 |
""" |
|
|
488 |
np.random.seed(random_seed) |
|
|
489 |
|
|
|
490 |
#pull event names in order of trigger number |
|
|
491 |
epochs.event_id = {'cond0':1, 'cond1':2} |
|
|
492 |
event_names = ['cond0','cond1'] |
|
|
493 |
i = 0 |
|
|
494 |
for key, value in sorted(epochs.event_id.items(), |
|
|
495 |
key=lambda item: (item[1],item[0])): |
|
|
496 |
event_names[i] = key |
|
|
497 |
i += 1 |
|
|
498 |
|
|
|
499 |
#Create feats object for output |
|
|
500 |
feats = Feats() |
|
|
501 |
feats.num_classes = len(epochs.event_id) |
|
|
502 |
feats.model_type = model_type |
|
|
503 |
|
|
|
504 |
if frequency_domain: |
|
|
505 |
print('Constructing Frequency Domain Features') |
|
|
506 |
|
|
|
507 |
#list of frequencies to output |
|
|
508 |
f_low = flims[0] |
|
|
509 |
f_high = flims[1] |
|
|
510 |
frequencies = np.linspace(f_low, f_high, f_bins, endpoint=True) |
|
|
511 |
|
|
|
512 |
#option to select all electrodes for fft |
|
|
513 |
if wavelet_electrodes == 'all': |
|
|
514 |
wavelet_electrodes = pick_types(epochs.info,eeg=True,eog=False) |
|
|
515 |
|
|
|
516 |
#type of output from wavelet analysis |
|
|
517 |
if include_phase: |
|
|
518 |
tfr_output_type = 'complex' |
|
|
519 |
else: |
|
|
520 |
tfr_output_type = 'power' |
|
|
521 |
|
|
|
522 |
tfr_dict = {} |
|
|
523 |
for event in event_names: |
|
|
524 |
print('Computing Morlet Wavelets on ' + event) |
|
|
525 |
tfr_temp = tfr_morlet(epochs[event], freqs=frequencies, |
|
|
526 |
n_cycles=wave_cycles, return_itc=False, |
|
|
527 |
picks=wavelet_electrodes, average=False, |
|
|
528 |
decim=wavelet_decim, output=tfr_output_type) |
|
|
529 |
|
|
|
530 |
# Apply spectral baseline and find stim onset time |
|
|
531 |
tfr_temp = tfr_temp.apply_baseline(spect_baseline,mode='mean') |
|
|
532 |
stim_onset = np.argmax(tfr_temp.times>0) |
|
|
533 |
|
|
|
534 |
# Reshape power output and save to tfr dict |
|
|
535 |
power_out_temp = np.moveaxis(tfr_temp.data[:,:,:,stim_onset:],1,3) |
|
|
536 |
power_out_temp = np.moveaxis(power_out_temp,1,2) |
|
|
537 |
print(event + ' trials: ' + str(len(power_out_temp))) |
|
|
538 |
tfr_dict[event] = power_out_temp |
|
|
539 |
|
|
|
540 |
#reshape times (sloppy but just use the last temp tfr) |
|
|
541 |
feats.new_times = tfr_temp.times[stim_onset:] |
|
|
542 |
|
|
|
543 |
for event in event_names: |
|
|
544 |
print(event + ' Time Points: ' + str(len(feats.new_times))) |
|
|
545 |
print(event + ' Frequencies: ' + str(len(tfr_temp.freqs))) |
|
|
546 |
|
|
|
547 |
#Construct X and Y |
|
|
548 |
for ievent,event in enumerate(event_names): |
|
|
549 |
if ievent == 0: |
|
|
550 |
X = tfr_dict[event] |
|
|
551 |
Y_class = np.zeros(len(tfr_dict[event])) |
|
|
552 |
else: |
|
|
553 |
X = np.append(X,tfr_dict[event],0) |
|
|
554 |
Y_class = np.append(Y_class,np.ones(len(tfr_dict[event]))*ievent,0) |
|
|
555 |
|
|
|
556 |
#concatenate real and imaginary data |
|
|
557 |
if include_phase: |
|
|
558 |
print('Concatenating the real and imaginary components') |
|
|
559 |
X = np.append(np.real(X),np.imag(X),2) |
|
|
560 |
|
|
|
561 |
#compute median over electrodes to decrease features |
|
|
562 |
if electrode_median: |
|
|
563 |
print('Computing Median over electrodes') |
|
|
564 |
X = np.expand_dims(np.median(X,axis=len(X.shape)-1),2) |
|
|
565 |
|
|
|
566 |
#reshape for various models |
|
|
567 |
if model_type == 'NN' or model_type == 'LSTM': |
|
|
568 |
X = np.reshape(X, (X.shape[0], X.shape[1], np.prod(X.shape[2:]))) |
|
|
569 |
|
|
|
570 |
if model_type == 'CNN3D': |
|
|
571 |
X = np.expand_dims(X,4) |
|
|
572 |
|
|
|
573 |
if model_type == 'AUTO' or model_type == 'AUTODeep': |
|
|
574 |
print('Auto model reshape') |
|
|
575 |
X = np.reshape(X, (X.shape[0],np.prod(X.shape[1:]))) |
|
|
576 |
|
|
|
577 |
|
|
|
578 |
if not frequency_domain: |
|
|
579 |
print('Constructing Time Domain Features') |
|
|
580 |
|
|
|
581 |
#if using muse aux port as eeg must label it as such |
|
|
582 |
eeg_chans = pick_types(epochs.info,eeg=True,eog=False) |
|
|
583 |
|
|
|
584 |
#put channels last, remove eye and stim |
|
|
585 |
X = np.moveaxis(epochs._data[:,eeg_chans,:],1,2); |
|
|
586 |
|
|
|
587 |
#take post baseline only |
|
|
588 |
stim_onset = np.argmax(epochs.times>0) |
|
|
589 |
feats.new_times = epochs.times[stim_onset:] |
|
|
590 |
X = X[:,stim_onset:,:] |
|
|
591 |
|
|
|
592 |
#convert markers to class |
|
|
593 |
#requires markers to be 1 and 2 in data file? |
|
|
594 |
#This probably is not robust to other marker numbers |
|
|
595 |
Y_class = epochs.events[:,2]-1 #subtract 1 to make 0 and 1 |
|
|
596 |
|
|
|
597 |
#median over electrodes to reduce features |
|
|
598 |
if electrode_median: |
|
|
599 |
print('Computing Median over electrodes') |
|
|
600 |
X = np.expand_dims(np.median(X,axis=len(X.shape)-1),2) |
|
|
601 |
|
|
|
602 |
## Model Reshapes: |
|
|
603 |
# reshape for CNN |
|
|
604 |
if model_type == 'CNN': |
|
|
605 |
print('Size X before reshape for CNN: ' + str(X.shape)) |
|
|
606 |
X = np.expand_dims(X,3 ) |
|
|
607 |
print('Size X before reshape for CNN: ' + str(X.shape)) |
|
|
608 |
|
|
|
609 |
# reshape for CNN3D |
|
|
610 |
if model_type == 'CNN3D': |
|
|
611 |
print('Size X before reshape for CNN3D: ' + str(X.shape)) |
|
|
612 |
X = np.expand_dims(np.expand_dims(X,3),4) |
|
|
613 |
print('Size X before reshape for CNN3D: ' + str(X.shape)) |
|
|
614 |
|
|
|
615 |
#reshape for autoencoder |
|
|
616 |
if model_type == 'AUTO' or model_type == 'AUTODeep': |
|
|
617 |
print('Size X before reshape for Auto: ' + str(X.shape)) |
|
|
618 |
X = np.reshape(X, (X.shape[0], np.prod(X.shape[1:]))) |
|
|
619 |
print('Size X after reshape for Auto: ' + str(X.shape)) |
|
|
620 |
|
|
|
621 |
|
|
|
622 |
#Normalize X - TODO: need to save mean and std for future test + val |
|
|
623 |
if normalization: |
|
|
624 |
print('Normalizing X') |
|
|
625 |
X = (X - np.mean(X)) / np.std(X) |
|
|
626 |
|
|
|
627 |
# convert class vectors to one hot Y and recast X |
|
|
628 |
Y = keras.utils.to_categorical(Y_class,feats.num_classes) |
|
|
629 |
X = X.astype('float32') |
|
|
630 |
|
|
|
631 |
# add watermark for testing models |
|
|
632 |
if watermark: |
|
|
633 |
X[Y[:,0]==0,0:2,] = 0 |
|
|
634 |
X[Y[:,0]==1,0:2,] = 1 |
|
|
635 |
|
|
|
636 |
# Compute model input shape |
|
|
637 |
feats.input_shape = X.shape[1:] |
|
|
638 |
|
|
|
639 |
# Split training test and validation data |
|
|
640 |
val_prop = val_split / (1-test_split) |
|
|
641 |
(feats.x_train, |
|
|
642 |
feats.x_test, |
|
|
643 |
feats.y_train, |
|
|
644 |
feats.y_test) = train_test_split(X, Y, |
|
|
645 |
test_size=test_split, |
|
|
646 |
random_state=random_seed) |
|
|
647 |
(feats.x_train, |
|
|
648 |
feats.x_val, |
|
|
649 |
feats.y_train, |
|
|
650 |
feats.y_val) = train_test_split(feats.x_train, feats.y_train, |
|
|
651 |
test_size=val_prop, |
|
|
652 |
random_state=random_seed) |
|
|
653 |
|
|
|
654 |
#compute class weights for uneven classes |
|
|
655 |
y_ints = [y.argmax() for y in feats.y_train] |
|
|
656 |
feats.class_weights = class_weight.compute_class_weight('balanced', |
|
|
657 |
np.unique(y_ints), |
|
|
658 |
y_ints) |
|
|
659 |
|
|
|
660 |
#Print some outputs |
|
|
661 |
print('Combined X Shape: ' + str(X.shape)) |
|
|
662 |
print('Combined Y Shape: ' + str(Y_class.shape)) |
|
|
663 |
print('Y Example (should be 1s & 0s): ' + str(Y_class[0:10])) |
|
|
664 |
print('X Range: ' + str(np.min(X)) + ':' + str(np.max(X))) |
|
|
665 |
print('Input Shape: ' + str(feats.input_shape)) |
|
|
666 |
print('x_train shape:', feats.x_train.shape) |
|
|
667 |
print(feats.x_train.shape[0], 'train samples') |
|
|
668 |
print(feats.x_test.shape[0], 'test samples') |
|
|
669 |
print(feats.x_val.shape[0], 'validation samples') |
|
|
670 |
print('Class Weights: ' + str(feats.class_weights)) |
|
|
671 |
|
|
|
672 |
return feats |
|
|
673 |
|
|
|
674 |
|
|
|
675 |
|
|
|
676 |
|
|
|
677 |
|
|
|
678 |
def CreateModel(feats,units=[16,8,4,8,16], dropout=.25, |
|
|
679 |
batch_norm=True, filt_size=3, pool_size=2): |
|
|
680 |
|
|
|
681 |
print('Creating ' + feats.model_type + ' Model') |
|
|
682 |
print('Input shape: ' + str(feats.input_shape)) |
|
|
683 |
|
|
|
684 |
|
|
|
685 |
nunits = len(units) |
|
|
686 |
|
|
|
687 |
##---LSTM - Many to two, sequence of time to classes |
|
|
688 |
#Units must be at least two |
|
|
689 |
if feats.model_type == 'LSTM': |
|
|
690 |
if nunits < 2: |
|
|
691 |
print('Warning: Need at least two layers for LSTM') |
|
|
692 |
|
|
|
693 |
model = Sequential() |
|
|
694 |
model.add(LSTM(input_shape=(None, feats.input_shape[1]), |
|
|
695 |
units=units[0], return_sequences=True)) |
|
|
696 |
if batch_norm: |
|
|
697 |
model.add(BatchNormalization()) |
|
|
698 |
model.add(Activation('relu')) |
|
|
699 |
if dropout: |
|
|
700 |
model.add(Dropout(dropout)) |
|
|
701 |
|
|
|
702 |
if len(units) > 2: |
|
|
703 |
for unit in units[1:-1]: |
|
|
704 |
model.add(LSTM(units=unit,return_sequences=True)) |
|
|
705 |
if batch_norm: |
|
|
706 |
model.add(BatchNormalization()) |
|
|
707 |
model.add(Activation('relu')) |
|
|
708 |
if dropout: |
|
|
709 |
model.add(Dropout(dropout)) |
|
|
710 |
|
|
|
711 |
model.add(LSTM(units=units[-1],return_sequences=False)) |
|
|
712 |
if batch_norm: |
|
|
713 |
model.add(BatchNormalization()) |
|
|
714 |
model.add(Activation('relu')) |
|
|
715 |
if dropout: |
|
|
716 |
model.add(Dropout(dropout)) |
|
|
717 |
|
|
|
718 |
model.add(Dense(units=feats.num_classes)) |
|
|
719 |
model.add(Activation("softmax")) |
|
|
720 |
|
|
|
721 |
|
|
|
722 |
##---DenseFeedforward Network |
|
|
723 |
#Makes a hidden layer for each item in units |
|
|
724 |
if feats.model_type == 'NN': |
|
|
725 |
model = Sequential() |
|
|
726 |
model.add(Flatten(input_shape=feats.input_shape)) |
|
|
727 |
|
|
|
728 |
for unit in units: |
|
|
729 |
model.add(Dense(unit)) |
|
|
730 |
if batch_norm: |
|
|
731 |
model.add(BatchNormalization()) |
|
|
732 |
model.add(Activation('relu')) |
|
|
733 |
if dropout: |
|
|
734 |
model.add(Dropout(dropout)) |
|
|
735 |
|
|
|
736 |
model.add(Dense(feats.num_classes, activation='softmax')) |
|
|
737 |
|
|
|
738 |
##----Convolutional Network |
|
|
739 |
if feats.model_type == 'CNN': |
|
|
740 |
if nunits < 2: |
|
|
741 |
print('Warning: Need at least two layers for CNN') |
|
|
742 |
model = Sequential() |
|
|
743 |
model.add(Conv2D(units[0], filt_size, |
|
|
744 |
input_shape=feats.input_shape, padding='same')) |
|
|
745 |
model.add(Activation('relu')) |
|
|
746 |
model.add(MaxPooling2D(pool_size=pool_size, padding='same')) |
|
|
747 |
|
|
|
748 |
if nunits > 2: |
|
|
749 |
for unit in units[1:-1]: |
|
|
750 |
model.add(Conv2D(unit, filt_size, padding='same')) |
|
|
751 |
model.add(Activation('relu')) |
|
|
752 |
model.add(MaxPooling2D(pool_size=pool_size, padding='same')) |
|
|
753 |
|
|
|
754 |
|
|
|
755 |
model.add(Flatten()) |
|
|
756 |
model.add(Dense(units[-1])) |
|
|
757 |
model.add(Activation('relu')) |
|
|
758 |
model.add(Dense(feats.num_classes)) |
|
|
759 |
model.add(Activation('softmax')) |
|
|
760 |
|
|
|
761 |
##----Convolutional Network |
|
|
762 |
if feats.model_type == 'CNN3D': |
|
|
763 |
if nunits < 2: |
|
|
764 |
print('Warning: Need at least two layers for CNN') |
|
|
765 |
model = Sequential() |
|
|
766 |
model.add(Conv3D(units[0], filt_size, |
|
|
767 |
input_shape=feats.input_shape, padding='same')) |
|
|
768 |
model.add(Activation('relu')) |
|
|
769 |
model.add(MaxPooling3D(pool_size=pool_size, padding='same')) |
|
|
770 |
|
|
|
771 |
if nunits > 2: |
|
|
772 |
for unit in units[1:-1]: |
|
|
773 |
model.add(Conv3D(unit, filt_size, padding='same')) |
|
|
774 |
model.add(Activation('relu')) |
|
|
775 |
model.add(MaxPooling3D(pool_size=pool_size, padding='same')) |
|
|
776 |
|
|
|
777 |
|
|
|
778 |
model.add(Flatten()) |
|
|
779 |
model.add(Dense(units[-1])) |
|
|
780 |
model.add(Activation('relu')) |
|
|
781 |
model.add(Dense(feats.num_classes)) |
|
|
782 |
model.add(Activation('softmax')) |
|
|
783 |
|
|
|
784 |
|
|
|
785 |
## Autoencoder |
|
|
786 |
#takes the first item in units for hidden layer size |
|
|
787 |
if feats.model_type == 'AUTO': |
|
|
788 |
encoding_dim = units[0] |
|
|
789 |
input_data = Input(shape=(feats.input_shape[0],)) |
|
|
790 |
#,activity_regularizer=regularizers.l1(10e-5) |
|
|
791 |
encoded = Dense(encoding_dim, activation='relu')(input_data) |
|
|
792 |
decoded = Dense(feats.input_shape[0], activation='sigmoid')(encoded) |
|
|
793 |
model = Model(input_data, decoded) |
|
|
794 |
|
|
|
795 |
encoder = Model(input_data,encoded) |
|
|
796 |
encoded_input = Input(shape=(encoding_dim,)) |
|
|
797 |
decoder_layer = model.layers[-1] |
|
|
798 |
decoder = Model(encoded_input, decoder_layer(encoded_input)) |
|
|
799 |
|
|
|
800 |
|
|
|
801 |
#takes an odd number of layers > 1 |
|
|
802 |
#e.g. units = [64,32,16,32,64] |
|
|
803 |
if feats.model_type == 'AUTODeep': |
|
|
804 |
if nunits % 2 == 0: |
|
|
805 |
print('Warning: Please enter odd number of layers into units') |
|
|
806 |
|
|
|
807 |
half = nunits/2 |
|
|
808 |
midi = int(np.floor(half)) |
|
|
809 |
|
|
|
810 |
input_data = Input(shape=(feats.input_shape[0],)) |
|
|
811 |
encoded = Dense(units[0], activation='relu')(input_data) |
|
|
812 |
|
|
|
813 |
#encoder decreases |
|
|
814 |
if nunits >= 3: |
|
|
815 |
for unit in units[1:midi]: |
|
|
816 |
encoded = Dense(unit, activation='relu')(encoded) |
|
|
817 |
|
|
|
818 |
#latent space |
|
|
819 |
decoded = Dense(units[midi], activation='relu')(encoded) |
|
|
820 |
|
|
|
821 |
#decoder increses |
|
|
822 |
if nunits >= 3: |
|
|
823 |
for unit in units[midi+1:-1]: |
|
|
824 |
decoded = Dense(unit, activation='relu')(decoded) |
|
|
825 |
|
|
|
826 |
decoded = Dense(units[-1], activation='relu')(decoded) |
|
|
827 |
|
|
|
828 |
decoded = Dense(feats.input_shape[0], activation='sigmoid')(decoded) |
|
|
829 |
model = Model(input_data, decoded) |
|
|
830 |
|
|
|
831 |
encoder = Model(input_data,encoded) |
|
|
832 |
encoded_input = Input(shape=(units[midi],)) |
|
|
833 |
|
|
|
834 |
|
|
|
835 |
|
|
|
836 |
|
|
|
837 |
|
|
|
838 |
if feats.model_type == 'AUTO' or feats.model_type == 'AUTODeep': |
|
|
839 |
opt = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, |
|
|
840 |
epsilon=None, decay=0.0, amsgrad=False) |
|
|
841 |
model.compile(optimizer=opt, loss='mean_squared_error') |
|
|
842 |
|
|
|
843 |
|
|
|
844 |
|
|
|
845 |
if ((feats.model_type == 'CNN') or |
|
|
846 |
(feats.model_type == 'CNN3D') or |
|
|
847 |
(feats.model_type == 'LSTM') or |
|
|
848 |
(feats.model_type == 'NN')): |
|
|
849 |
|
|
|
850 |
# initiate adam optimizer |
|
|
851 |
opt = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, |
|
|
852 |
epsilon=None, decay=0.0, amsgrad=False) |
|
|
853 |
# Let's train the model using RMSprop |
|
|
854 |
model.compile(loss='binary_crossentropy', |
|
|
855 |
optimizer=opt, |
|
|
856 |
metrics=['accuracy']) |
|
|
857 |
encoder = [] |
|
|
858 |
|
|
|
859 |
|
|
|
860 |
model.summary() |
|
|
861 |
|
|
|
862 |
return model, encoder |
|
|
863 |
|
|
|
864 |
|
|
|
865 |
def TrainTestVal(model, feats, batch_size=2, |
|
|
866 |
train_epochs=20, show_plots=True): |
|
|
867 |
|
|
|
868 |
print('Training Model:') |
|
|
869 |
# Train Model |
|
|
870 |
if feats.model_type == 'AUTO' or feats.model_type == 'AUTODeep': |
|
|
871 |
print('Training autoencoder:') |
|
|
872 |
|
|
|
873 |
history = model.fit(feats.x_train, feats.x_train, |
|
|
874 |
batch_size = batch_size, |
|
|
875 |
epochs=train_epochs, |
|
|
876 |
validation_data=(feats.x_val,feats.x_val), |
|
|
877 |
shuffle=True, |
|
|
878 |
verbose=True, |
|
|
879 |
class_weight=feats.class_weights |
|
|
880 |
) |
|
|
881 |
|
|
|
882 |
# list all data in history |
|
|
883 |
print(history.history.keys()) |
|
|
884 |
|
|
|
885 |
if show_plots: |
|
|
886 |
# summarize history for loss |
|
|
887 |
plt.semilogy(history.history['loss']) |
|
|
888 |
plt.semilogy(history.history['val_loss']) |
|
|
889 |
plt.title('model loss') |
|
|
890 |
plt.ylabel('loss') |
|
|
891 |
plt.xlabel('epoch') |
|
|
892 |
plt.legend(['train', 'val'], loc='upper left') |
|
|
893 |
plt.show() |
|
|
894 |
|
|
|
895 |
else: |
|
|
896 |
history = model.fit(feats.x_train, feats.y_train, |
|
|
897 |
batch_size=batch_size, |
|
|
898 |
epochs=train_epochs, |
|
|
899 |
validation_data=(feats.x_val, feats.y_val), |
|
|
900 |
shuffle=True, |
|
|
901 |
verbose=True, |
|
|
902 |
class_weight=feats.class_weights |
|
|
903 |
) |
|
|
904 |
|
|
|
905 |
# list all data in history |
|
|
906 |
print(history.history.keys()) |
|
|
907 |
|
|
|
908 |
if show_plots: |
|
|
909 |
# summarize history for accuracy |
|
|
910 |
plt.plot(history.history['acc']) |
|
|
911 |
plt.plot(history.history['val_acc']) |
|
|
912 |
plt.title('model accuracy') |
|
|
913 |
plt.ylabel('accuracy') |
|
|
914 |
plt.xlabel('epoch') |
|
|
915 |
plt.legend(['train', 'val'], loc='upper left') |
|
|
916 |
plt.show() |
|
|
917 |
# summarize history for loss |
|
|
918 |
plt.semilogy(history.history['loss']) |
|
|
919 |
plt.semilogy(history.history['val_loss']) |
|
|
920 |
plt.title('model loss') |
|
|
921 |
plt.ylabel('loss') |
|
|
922 |
plt.xlabel('epoch') |
|
|
923 |
plt.legend(['train', 'val'], loc='upper left') |
|
|
924 |
plt.show() |
|
|
925 |
|
|
|
926 |
|
|
|
927 |
# Test on left out Test data |
|
|
928 |
score, acc = model.evaluate(feats.x_test, feats.y_test, |
|
|
929 |
batch_size=batch_size) |
|
|
930 |
print(model.metrics_names) |
|
|
931 |
print('Test loss:', score) |
|
|
932 |
print('Test accuracy:', acc) |
|
|
933 |
|
|
|
934 |
# Build a dictionary of data to return |
|
|
935 |
data = {} |
|
|
936 |
data['score'] = score |
|
|
937 |
data['acc'] = acc |
|
|
938 |
|
|
|
939 |
return model, data |