|
a |
|
b/notebooks/DeepEEG_Sim.ipynb |
|
|
1 |
{ |
|
|
2 |
"nbformat": 4, |
|
|
3 |
"nbformat_minor": 0, |
|
|
4 |
"metadata": { |
|
|
5 |
"colab": { |
|
|
6 |
"name": "DeepEEG_Sim.ipynb", |
|
|
7 |
"version": "0.3.2", |
|
|
8 |
"provenance": [], |
|
|
9 |
"include_colab_link": true |
|
|
10 |
}, |
|
|
11 |
"kernelspec": { |
|
|
12 |
"name": "python3", |
|
|
13 |
"display_name": "Python 3" |
|
|
14 |
}, |
|
|
15 |
"accelerator": "GPU" |
|
|
16 |
}, |
|
|
17 |
"cells": [ |
|
|
18 |
{ |
|
|
19 |
"cell_type": "markdown", |
|
|
20 |
"metadata": { |
|
|
21 |
"id": "view-in-github", |
|
|
22 |
"colab_type": "text" |
|
|
23 |
}, |
|
|
24 |
"source": [ |
|
|
25 |
"<a href=\"https://colab.research.google.com/github/kylemath/DeepEEG/blob/master/notebooks/DeepEEG_Sim.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" |
|
|
26 |
] |
|
|
27 |
}, |
|
|
28 |
{ |
|
|
29 |
"cell_type": "markdown", |
|
|
30 |
"metadata": { |
|
|
31 |
"id": "cH7KRd8ZZPMd", |
|
|
32 |
"colab_type": "text" |
|
|
33 |
}, |
|
|
34 |
"source": [ |
|
|
35 |
"## DeepEEG\n" |
|
|
36 |
] |
|
|
37 |
}, |
|
|
38 |
{ |
|
|
39 |
"cell_type": "code", |
|
|
40 |
"metadata": { |
|
|
41 |
"id": "KjZu4dFMFHJV", |
|
|
42 |
"colab_type": "code", |
|
|
43 |
"colab": {} |
|
|
44 |
}, |
|
|
45 |
"source": [ |
|
|
46 |
"!git clone https://github.com/kylemath/DeepEEG\n", |
|
|
47 |
"!chmod +x ./DeepEEG/install.sh\n", |
|
|
48 |
"%cd DeepEEG\n", |
|
|
49 |
"!./install.sh\n", |
|
|
50 |
"from utils import *\n", |
|
|
51 |
"%matplotlib inline\n", |
|
|
52 |
"%cd .." |
|
|
53 |
], |
|
|
54 |
"execution_count": 0, |
|
|
55 |
"outputs": [] |
|
|
56 |
}, |
|
|
57 |
{ |
|
|
58 |
"cell_type": "markdown", |
|
|
59 |
"metadata": { |
|
|
60 |
"id": "FhkDPfIq1ewa", |
|
|
61 |
"colab_type": "text" |
|
|
62 |
}, |
|
|
63 |
"source": [ |
|
|
64 |
"#Simulate Data" |
|
|
65 |
] |
|
|
66 |
}, |
|
|
67 |
{ |
|
|
68 |
"cell_type": "code", |
|
|
69 |
"metadata": { |
|
|
70 |
"id": "jhU8hlcg1e6T", |
|
|
71 |
"colab_type": "code", |
|
|
72 |
"colab": {} |
|
|
73 |
}, |
|
|
74 |
"source": [ |
|
|
75 |
"raw,event_id = SimulateRaw(amp1 = 50, amp2 = 5, freq = 2, batch = 2)" |
|
|
76 |
], |
|
|
77 |
"execution_count": 0, |
|
|
78 |
"outputs": [] |
|
|
79 |
}, |
|
|
80 |
{ |
|
|
81 |
"cell_type": "markdown", |
|
|
82 |
"metadata": { |
|
|
83 |
"id": "AVBtNVebDtUc", |
|
|
84 |
"colab_type": "text" |
|
|
85 |
}, |
|
|
86 |
"source": [ |
|
|
87 |
"#Run Preprocessing\n", |
|
|
88 |
"\n", |
|
|
89 |
"**Input: mne.raw, event_id**\n", |
|
|
90 |
"\n", |
|
|
91 |
"**Output: mne.epochs**\n", |
|
|
92 |
"```python\n", |
|
|
93 |
"plot_psd=False\n", |
|
|
94 |
"filter_data=True\n", |
|
|
95 |
"eeg_filter_highpass=1\n", |
|
|
96 |
"plot_events=False\n", |
|
|
97 |
"epoch_time=(-.2,1)\n", |
|
|
98 |
"baseline=(-.2,0)\n", |
|
|
99 |
"rej_thresh_uV=200\n", |
|
|
100 |
"rereference=False\n", |
|
|
101 |
"emcp_raw=False\n", |
|
|
102 |
"emcp_epochs=False\n", |
|
|
103 |
"epoch_decim=1\n", |
|
|
104 |
"plot_electrodes=False\n", |
|
|
105 |
"plot_erp=False\n", |
|
|
106 |
"```\n", |
|
|
107 |
"\n", |
|
|
108 |
"\n" |
|
|
109 |
] |
|
|
110 |
}, |
|
|
111 |
{ |
|
|
112 |
"cell_type": "code", |
|
|
113 |
"metadata": { |
|
|
114 |
"id": "RLIKMk6P453f", |
|
|
115 |
"colab_type": "code", |
|
|
116 |
"colab": {} |
|
|
117 |
}, |
|
|
118 |
"source": [ |
|
|
119 |
"epochs = PreProcess(raw, event_id,filter_data=False,epoch_time = (-.2,1),plot_erp=True) \n" |
|
|
120 |
], |
|
|
121 |
"execution_count": 0, |
|
|
122 |
"outputs": [] |
|
|
123 |
}, |
|
|
124 |
{ |
|
|
125 |
"cell_type": "markdown", |
|
|
126 |
"metadata": { |
|
|
127 |
"id": "iceVBB8vFxcr", |
|
|
128 |
"colab_type": "text" |
|
|
129 |
}, |
|
|
130 |
"source": [ |
|
|
131 |
"#Plot Features:\n" |
|
|
132 |
] |
|
|
133 |
}, |
|
|
134 |
{ |
|
|
135 |
"cell_type": "code", |
|
|
136 |
"metadata": { |
|
|
137 |
"id": "LqA4ZXaPFxkC", |
|
|
138 |
"colab_type": "code", |
|
|
139 |
"colab": {} |
|
|
140 |
}, |
|
|
141 |
"source": [ |
|
|
142 |
"pick = 33 \n", |
|
|
143 |
"#select electrode\n", |
|
|
144 |
"for event in event_id.keys():\n", |
|
|
145 |
" fig = plt.imshow(epochs[event]._data[:,pick,:])\n", |
|
|
146 |
" plt.show()" |
|
|
147 |
], |
|
|
148 |
"execution_count": 0, |
|
|
149 |
"outputs": [] |
|
|
150 |
}, |
|
|
151 |
{ |
|
|
152 |
"cell_type": "markdown", |
|
|
153 |
"metadata": { |
|
|
154 |
"id": "pwqD_voiDypa", |
|
|
155 |
"colab_type": "text" |
|
|
156 |
}, |
|
|
157 |
"source": [ |
|
|
158 |
"#Run FeatureEngineer\n", |
|
|
159 |
"**Input: mne.epochs**\n", |
|
|
160 |
"\n", |
|
|
161 |
"**Output: deepeeg.feats**\n", |
|
|
162 |
"```python\n", |
|
|
163 |
"model_type='NN'\n", |
|
|
164 |
"frequency_domain=False\n", |
|
|
165 |
"normalization=True\n", |
|
|
166 |
"electrode_median=False\n", |
|
|
167 |
"wavelet_decim=1\n", |
|
|
168 |
"flims=(3,30)\n", |
|
|
169 |
"f_bins=20\n", |
|
|
170 |
"wave_cycles=3\n", |
|
|
171 |
"spect_baseline=[-1,-.5]\n", |
|
|
172 |
"electrodes_out=[11,12,13,14,15]\n", |
|
|
173 |
"test_split = 0.2\n", |
|
|
174 |
"val_split = 0.2\n", |
|
|
175 |
"random_seed=1017\n", |
|
|
176 |
"watermark = False\n", |
|
|
177 |
"```" |
|
|
178 |
] |
|
|
179 |
}, |
|
|
180 |
{ |
|
|
181 |
"cell_type": "code", |
|
|
182 |
"metadata": { |
|
|
183 |
"id": "i_jYlTW1A6sb", |
|
|
184 |
"colab_type": "code", |
|
|
185 |
"colab": {} |
|
|
186 |
}, |
|
|
187 |
"source": [ |
|
|
188 |
"feats = FeatureEngineer(epochs, model_type = 'NN',\n", |
|
|
189 |
" frequency_domain=True, \n", |
|
|
190 |
" normalization= False,\n", |
|
|
191 |
" flims=(5,20),spect_baseline=[-.5,0]\n", |
|
|
192 |
" )" |
|
|
193 |
], |
|
|
194 |
"execution_count": 0, |
|
|
195 |
"outputs": [] |
|
|
196 |
}, |
|
|
197 |
{ |
|
|
198 |
"cell_type": "markdown", |
|
|
199 |
"metadata": { |
|
|
200 |
"id": "9ChMvr-jKp8P", |
|
|
201 |
"colab_type": "text" |
|
|
202 |
}, |
|
|
203 |
"source": [ |
|
|
204 |
"# Run CreateModel\n", |
|
|
205 |
"\n", |
|
|
206 |
"**Input: deepeeg.feats**\n", |
|
|
207 |
"\n", |
|
|
208 |
"**Output: deepeeg.model, deepeeg.encoder**\n", |
|
|
209 |
"\n", |
|
|
210 |
"```python\n", |
|
|
211 |
"units=[16,8,4,8,16]\n", |
|
|
212 |
"dropout=.25\n", |
|
|
213 |
"batch_norm=True\n", |
|
|
214 |
"filt_size=3\n", |
|
|
215 |
"pool_size=2\n", |
|
|
216 |
"```" |
|
|
217 |
] |
|
|
218 |
}, |
|
|
219 |
{ |
|
|
220 |
"cell_type": "code", |
|
|
221 |
"metadata": { |
|
|
222 |
"id": "HFf3rBbJKqHR", |
|
|
223 |
"colab_type": "code", |
|
|
224 |
"colab": {} |
|
|
225 |
}, |
|
|
226 |
"source": [ |
|
|
227 |
"model, _ = CreateModel(feats, units=[512,512])" |
|
|
228 |
], |
|
|
229 |
"execution_count": 0, |
|
|
230 |
"outputs": [] |
|
|
231 |
}, |
|
|
232 |
{ |
|
|
233 |
"cell_type": "markdown", |
|
|
234 |
"metadata": { |
|
|
235 |
"id": "-EKBjSapfE4O", |
|
|
236 |
"colab_type": "text" |
|
|
237 |
}, |
|
|
238 |
"source": [ |
|
|
239 |
"# TrainTestVal\n", |
|
|
240 |
"\n", |
|
|
241 |
"**Input: deepEEG.model, deepEEG.feats**\n", |
|
|
242 |
"\n", |
|
|
243 |
"```python\n", |
|
|
244 |
"batch_size=2\n", |
|
|
245 |
"train_epochs=20\n", |
|
|
246 |
"show_plots=True\n", |
|
|
247 |
"```" |
|
|
248 |
] |
|
|
249 |
}, |
|
|
250 |
{ |
|
|
251 |
"cell_type": "code", |
|
|
252 |
"metadata": { |
|
|
253 |
"id": "u6ize7eJfB3J", |
|
|
254 |
"colab_type": "code", |
|
|
255 |
"colab": {} |
|
|
256 |
}, |
|
|
257 |
"source": [ |
|
|
258 |
"TrainTestVal(model, feats)" |
|
|
259 |
], |
|
|
260 |
"execution_count": 0, |
|
|
261 |
"outputs": [] |
|
|
262 |
} |
|
|
263 |
] |
|
|
264 |
} |