Switch to side-by-side view

--- a
+++ b/notebooks/DeepEEG_Sim.ipynb
@@ -0,0 +1,264 @@
+{
+  "nbformat": 4,
+  "nbformat_minor": 0,
+  "metadata": {
+    "colab": {
+      "name": "DeepEEG_Sim.ipynb",
+      "version": "0.3.2",
+      "provenance": [],
+      "include_colab_link": true
+    },
+    "kernelspec": {
+      "name": "python3",
+      "display_name": "Python 3"
+    },
+    "accelerator": "GPU"
+  },
+  "cells": [
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "view-in-github",
+        "colab_type": "text"
+      },
+      "source": [
+        "<a href=\"https://colab.research.google.com/github/kylemath/DeepEEG/blob/master/notebooks/DeepEEG_Sim.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "cH7KRd8ZZPMd",
+        "colab_type": "text"
+      },
+      "source": [
+        "## DeepEEG\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "KjZu4dFMFHJV",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "source": [
+        "!git clone https://github.com/kylemath/DeepEEG\n",
+        "!chmod +x ./DeepEEG/install.sh\n",
+        "%cd DeepEEG\n",
+        "!./install.sh\n",
+        "from utils import *\n",
+        "%matplotlib inline\n",
+        "%cd .."
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "FhkDPfIq1ewa",
+        "colab_type": "text"
+      },
+      "source": [
+        "#Simulate Data"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "jhU8hlcg1e6T",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "source": [
+        "raw,event_id = SimulateRaw(amp1 = 50, amp2 = 5, freq = 2, batch = 2)"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "AVBtNVebDtUc",
+        "colab_type": "text"
+      },
+      "source": [
+        "#Run Preprocessing\n",
+        "\n",
+        "**Input:  mne.raw, event_id**\n",
+        "\n",
+        "**Output: mne.epochs**\n",
+        "```python\n",
+        "plot_psd=False\n",
+        "filter_data=True\n",
+        "eeg_filter_highpass=1\n",
+        "plot_events=False\n",
+        "epoch_time=(-.2,1)\n",
+        "baseline=(-.2,0)\n",
+        "rej_thresh_uV=200\n",
+        "rereference=False\n",
+        "emcp_raw=False\n",
+        "emcp_epochs=False\n",
+        "epoch_decim=1\n",
+        "plot_electrodes=False\n",
+        "plot_erp=False\n",
+        "```\n",
+        "\n",
+        "\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "RLIKMk6P453f",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "source": [
+        "epochs = PreProcess(raw, event_id,filter_data=False,epoch_time = (-.2,1),plot_erp=True)                \n"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "iceVBB8vFxcr",
+        "colab_type": "text"
+      },
+      "source": [
+        "#Plot Features:\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "LqA4ZXaPFxkC",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "source": [
+        "pick = 33 \n",
+        "#select electrode\n",
+        "for event in event_id.keys():\n",
+        "  fig = plt.imshow(epochs[event]._data[:,pick,:])\n",
+        "  plt.show()"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "pwqD_voiDypa",
+        "colab_type": "text"
+      },
+      "source": [
+        "#Run FeatureEngineer\n",
+        "**Input:  mne.epochs**\n",
+        "\n",
+        "**Output: deepeeg.feats**\n",
+        "```python\n",
+        "model_type='NN'\n",
+        "frequency_domain=False\n",
+        "normalization=True\n",
+        "electrode_median=False\n",
+        "wavelet_decim=1\n",
+        "flims=(3,30)\n",
+        "f_bins=20\n",
+        "wave_cycles=3\n",
+        "spect_baseline=[-1,-.5]\n",
+        "electrodes_out=[11,12,13,14,15]\n",
+        "test_split = 0.2\n",
+        "val_split = 0.2\n",
+        "random_seed=1017\n",
+        "watermark = False\n",
+        "```"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "i_jYlTW1A6sb",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "source": [
+        "feats = FeatureEngineer(epochs, model_type = 'NN',\n",
+        "                        frequency_domain=True, \n",
+        "                        normalization= False,\n",
+        "                        flims=(5,20),spect_baseline=[-.5,0]\n",
+        "                        )"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "9ChMvr-jKp8P",
+        "colab_type": "text"
+      },
+      "source": [
+        "# Run CreateModel\n",
+        "\n",
+        "**Input: deepeeg.feats**\n",
+        "\n",
+        "**Output: deepeeg.model, deepeeg.encoder**\n",
+        "\n",
+        "```python\n",
+        "units=[16,8,4,8,16]\n",
+        "dropout=.25\n",
+        "batch_norm=True\n",
+        "filt_size=3\n",
+        "pool_size=2\n",
+        "```"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "HFf3rBbJKqHR",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "source": [
+        "model, _ = CreateModel(feats, units=[512,512])"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "-EKBjSapfE4O",
+        "colab_type": "text"
+      },
+      "source": [
+        "# TrainTestVal\n",
+        "\n",
+        "**Input: deepEEG.model, deepEEG.feats**\n",
+        "\n",
+        "```python\n",
+        "batch_size=2\n",
+        "train_epochs=20\n",
+        "show_plots=True\n",
+        "```"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "u6ize7eJfB3J",
+        "colab_type": "code",
+        "colab": {}
+      },
+      "source": [
+        "TrainTestVal(model, feats)"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    }
+  ]
+}
\ No newline at end of file