Diff of /BV_P3example.py [000000] .. [e6696a]

Switch to unified view

a b/BV_P3example.py
1
#conda create -n deepeeg
2
#source activate deepeeg
3
#chomd +x install.sh
4
#bash install.sh
5
#!git clone https://github.com/kylemath/eeg-notebooks_v0.1
6
#python
7
from utils import *
8
data_dir = '/Users/kylemathewson/Desktop/data/'
9
exp = 'P3'
10
subs = ['001','002','004','005','006','007','008','010']
11
subs = [ '008']
12
13
sessions = ['ActiveDry','ActiveWet','PassiveWet']
14
15
nsesh = len(sessions)
16
event_id = {'Target': 1, 'Standard': 2}
17
18
epochs = []
19
for sub in subs:
20
    print('Loading data for subject ' + sub)
21
    for session in sessions:
22
        #Load Data
23
        raw = LoadBVData(sub,session,data_dir,exp)
24
        #Pre-Process EEG Data
25
        temp_epochs = PreProcess(raw,event_id,
26
                            emcp_epochs=True, rereference=True,
27
                            plot_erp=False, rej_thresh_uV=1000, 
28
                            epoch_time=(-1,2), baseline=(-.2,0), 
29
                            epoch_decim=1,filter_range=(1,20))
30
        if len(temp_epochs) > 0:
31
            epochs.append(temp_epochs)
32
        else:
33
            print('Sub ' + sub + ', Cond ' 
34
                    + session + 'all trials rejected')
35
36
epochs = concatenate_epochs(epochs) 
37
38
#Engineer Features for Model
39
feats = FeatureEngineer(epochs,model_type='CNN',electrode_median=False,
40
                        normalization=False, frequency_domain=True, 
41
                        wavelet_decim=10)
42
#Create Model
43
model,_ = CreateModel(feats, units=[256,256,256,256])
44
#Train with validation, then Test
45
TrainTestVal(model,feats)
46
47