[6536f9]: / train_and_eval.py

Download this file

71 lines (53 with data), 2.4 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import time
import torch
from torchmetrics import Accuracy
def train_model(model: torch.nn.Module,
data_loader: torch.utils.data.DataLoader,
loss_fn: torch.nn.Module, #criterion
optimizer: torch.optim.Optimizer,
device: torch.device,
num_epochs,
output_shape):
start_time = time.time()
accuracy_metric = Accuracy(num_classes= output_shape, task='multiclass').to(device)
for epoch in range(num_epochs):
print(f'Epoch {epoch + 1}/{num_epochs}')
model.train()
train_loss = 0
for signal, class_label in data_loader:
signal, class_label = signal.to(device), class_label.to(device) #
train_pred = model(signal)
loss = loss_fn(train_pred, class_label)
train_loss += loss.item()
accuracy_metric(train_pred, class_label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_acc = accuracy_metric.compute() * 100
print(f"Train loss: {train_loss / len(data_loader):.5f} | Train accuracy: {train_acc:.2f}%")
accuracy_metric.reset()
total_time = (time.time() - start_time)
print(f"\nTotal training time: {total_time} seconds")
return total_time
def evaluate_model(model: torch.nn.Module,
test_loader: torch.utils.data.DataLoader,
loss_fn: torch.nn.Module, #criterion
device: torch.device,
output_shape):
start_time = time.time()
test_loss = 0
accuracy_metric = Accuracy(num_classes=output_shape, task='multiclass').to(device)
model.eval()
with torch.inference_mode():
for signal, class_label in test_loader:
signal, class_label = signal.to(device), class_label.to(device)
test_pred = model(signal)
loss = loss_fn(test_pred, class_label)
test_loss +=loss.item()
accuracy_metric(test_pred, class_label)
test_acc = accuracy_metric.compute() * 100
print(f"\nTest loss: {test_loss/len(test_loader):.5f} | Test accuracy: {test_acc:.2f}%")
accuracy_metric.reset()
total_time = (time.time() - start_time)
print(f"Total evaluation time: {total_time} seconds\n")
return test_acc.item(), total_time